

An Integrated Renewable Ecosystem

2012 Founded

26 CountriesOperating Worldwide

73 GW Engineered Integrated PV

Global top Brand of Renewable Solutions

One-Stop
Renewable
Solutions
Partner

Agenda

- 1 Six factors for a sustainable domestic PV Ecosystem / Worldwide status
- 2 Post-IRA Era
- 3 Cost competitiveness of the USA
- 4 Does it still make sense to invest to solar in the USA?
- 5 Worldwide examples

Vertical & Horizontal full Integration

into Giga-scale PV

- Quartz
- **Prebaked** electrode
- Coal

- **Graphite**
- chuck
- Gases H₂, Cl₂)
- (HCI, N₂,
- Hot zone
- Crucible
- Ar

- Diamond
- wire
 - **Screens**
 - Chemicals

Ag paste

Gases

- Glass
- **Encapsulation material**
- Al frames
- Junction box& ribbons etc.

Worldwide PV Production

Current Status

Integrated Manufacturing Along the Value Chain

Six Factors affecting the domestic PV Ecosystem in the USA

Capital Bottlenecks

High rates and risk premiums keep domestic manufacturing finance tight.

Fragile Supply Chain

Gaps from raw materials to components increase cost, risk, and lead times.

Grid & Permitting Drag

Slow, inconsistent interconnection and permits delay projects and inflate soft costs.

Equipment Support Gap (Non-PRC)

Limited incentives for allied toolmakers hinder competitive, non-PRC capacity.

Workforce Crunch

Shortages of skilled factory and field labor raise wages and stretch timelines.

Policy Whiplash

Unpredictable federal/state rules and trade actions undermine planning and investment.

Agenda

- 1 Six factors for a sustainable domestic PV Ecosystem / Worldwide status
- 2 Post-IRA Era
- 3 Cost competitiveness of the USA
- 4 Does it still make sense to invest to solar in the USA?
- 5 Worldwide examples

Domestic Investment in PV Manufacturing

Post-IRA Era

Imbalanced Investments in **Supply Chain**

Module assembly

- Capacity (14GW_{dc} CdTe, > 50GW_{dc} c-Si) exceeds 2025 market demand (≈ 40-45GW_{dc}) even wo imports (≈ 53GW 6/24-5/25) and inventory
- Lowest capex requirements, easy to move
- Equipment almost exclusively from Chinese vendors
- Shakeout imminent

Polysilicon

Capacity competes with SEMI (ASP & expansion)

Solar Cells

- 2GW_{dc} PERC operational
- Realistic +3GW_{dc} PERC and +1GW_{dc} TOPCon operational 2025
- Everything else at risk due to lack of access to capital
- TOPCon IP challenge
- Some select western equipment

Ingot/wafer

- ≈ 7GW_{dc} nameplate capacity to come online 2025
 - Corning to start manufacturing Q3'25
 - Qcells to start production H2'25
- · Rest at risk due to lack of financing despite CHIPS Act applicability

11

US Market Installations

Phaseout and Avoidance of/Safe Harboring for FEOC Restrictions?

Domestic PV installations between 2019 to 2024

- Wood Mac and SEIA report 30.4GW_{dc} for Q1-Q3'24 (EIA 21GW_{ac} \approx 26.25GW_{dc} at DC/AC ratio of 1.25)
- Preliminary total for 2024 ≈ 44GW_{dc}
- UPV increased 81% y/y, C&I 20%, while resi. shrank by ≈ 33%
- Preliminary data from SEIA for Q1'25 10.8GW_{dc}
- IEA forecast for 2025 32.5GW_{ac} (≈ 40.6 GW_{dc} at DC/AC ratio of 1.25)

Q1-Q3 2024 U.S. PV Installations by Region (30.4 GW_e)

Data: Wood Mackenzie/SEIA, U.S. Solar Market Insight: Q4, 2024

Agenda

- 1 Six factors for a sustainable domestic PV Ecosystem / Worldwide status
- 2 Post-IRA Era
- 3 Cost competitiveness of the USA
- 4 Does it still make sense to invest in solar in the USA?
- 5 Worldwide examples

Comparative Global PV Manufacturing cost and pricing

Our recent Assessment

- Production locations for PV manufacturing are diversifying globally
- Incentive programs available in India, USA, Turkey and in-sight for Europe

Question of investors and governments in PV manufacturing

- Which are the main cost drivers at each production stage along the PV value chain?
- What are the cost differences for PV production in different global regions?

Comparative Global PV Manufacturing Cost and Pricing Impact on "fully-local" in EU/U.S. manufactured TOPCon PV Module

MSP difference for "fully-local" TOPCon PV Module:

In Southeast Asia nearly similar, India slightly higher MSP.

Difference in Europe & US in comparison to China: Ingot-to-Wafer (ingot + wafer):

- EU: +1.4 / +2.2 ¢ct/Wp
- US: +1.3 / +1.9 ¢ct/Wp

Ingot-to-Cell (ingot + wafer + cell):

- EU: +2.6 / +4.0 ¢ct/Wp
- US: +4.9 / +6.2 ¢ct/Wp

Ingot-to-Module (cell + module):

- EU: +5.5 / +6.2 ¢ct/Wp
- US: +11.2 / +12.7 ¢ct/Wp
- → Main cost differences for Materials and Labor.

Comparative Global PV Manufacturing Cost and Pricing Relative Comparisons of Cost Drivers for PV Manufacturing

Key Cost Drivers in Europe and US in comparison to China

Equipment CAPEX

40-70% higher (w/ Western Equipment)

Building and Facility CAPEX

2.1-2.6 x higher construction costs

Labor costs

3-4 x higher: wages & working hours

Utility (Electricity, Water, ...)

20-60% higher

Material Costs:

50-80% higher (with local BOM)

Overhead, Financing, and Profit

Same margin adding more to MSP

System Cost Competitiveness

Breakdown by Components

Utility-scale, total installed PV system cost by country in 2023

• U.S. above average component costs and high soft costs

Breakdown of Cost Components (average of available country data):

Domestic PV

System Price Stagnation

Domestic PV system price regression slowing since passage of IRA

- 201 tariffs and AD/CVD impacting imported module and cell* pricing
- 2024 imports 54.3GW_{dc} modules, 13.89GW_{dc} cells*

Current module pricing (July, OPIS)

- Imports ≈ ¢25/W (SEA), ≈ ¢29/W (India)
- U.S. assembled not meeting DC ¢26-33/W
- U.S. meeting DC ≈ ¢40-50/W

System Size	Price H2 2024 (\$/W _{dc})	Change 2023–2024
2.5-10 kW _{dc}	\$4.15	-2%
10-100 kW _{dc}	\$3.42	-6%
100-500 kW _{dc}	\$2.55	+2%
0.5–1 MW _{dc}	\$2.11	+1%
1-5 MW _{dc}	\$1.63	+17%
5 MW _{dc} +	\$1.30	+2%

Domestic PV LCOE Competitiveness

LCOE comparison to other RE and conventional energy technologies

- Competitive LCOE (and PV+ESS most competitive installation time)
- IRA ITC, PTC, and Energy Community adders make PV significantly more attractive—the future of these IRA incentives is at present uncertain

Data: Lazard: Levelized Cost of Energy, June 2025

Agenda

- 1 Six factors for a sustainable domestic PV Ecosystem / Worldwide status
- 2 Post-IRA Era
- 3 Cost competitiveness of the USA
- 4 Does it still make sense to invest in solar in the USA?
- 5 Worldwide examples

Current Federal U.S. Policy Landscape 'nothing is certain but death and taxes' BUT

Trade & Policy Measures	Supply Chain Segment				
	Poly	c-Si Wafers	c-Si Cells	Modules	
AD/CVD Duties (PRC, Taiwan)			X	X	
AD/CVD Circumvention Duties			X	X	
AD/CVD Duties (SE Asia)			X	X	
Section 201 Tariffs				X	
Section 301 Tariffs (PRC)	X	X	x	X	
45X (MPTC) ²	X	X	X	X	
48C*	X		X	x	
48D (CHIPS)		X			
Transferability (45X)	X	X	X	X	
Domestic Content Bonus			X	X	
BABA Requirements			/ x	x	
Loan Guarantees	X		Х	x	
RD&D Support+					
FEOC Restrictions	Χ	X	X	х	

^e can stack

Downstream Incentives

- 25D resi, ITC
- 45Y PTC
- 48E ITC
- Transferability (also for 45X)

Various state-level policies either supporting or penalizing solar (both DG and UPV)

Local opposition towards DG, community solar, and UPV—perceived land conflict with agriculture but not with golf courses

- U.S. has 16,297 golf courses covering 8,014km²
- At 50% coverage this would accommodate the current installed PV capacity on only 3,000 of the courses

Data: Environ. Res. Commun. 7 (2025) 021012

closed, unclear if a new round would open if allocated \$10B are not used

⁺ unclear if new projects will be funded, Administration's 2026 SETO request at \$0, House Mark \$115M

Current Federal U.S. Policy Landscape Several states meets CO₂ goals despite hostile federal policy

- 7/1 Section 232 case Commerce investigation for polysilicon and derivatives
 - Unclear if PV will be viewed as a national security element, and if so, how far down the supply chain remedies would go
- 7/8 announcement planning 50% tariffs on copper as of 8/1 to match aluminum and steel
- Country-specific tariffs of importance to PV
 - EU Trump threatens 30% starting 8/1, EU signalled acceptance of 10% if certain sectors are exempt
 - ROK & Japan 25% (as of 7/7)
 - India, no Trump letter yet
- 7/17 AD/CVD investigation (Solar 4) Indonesia, Laos, and India; if positive ≈ summer 2026
- Potential "Blue Wafer Debacle" following recent CBP ruling
- Counterproductive actions by administration scaling back on energy efficiency standards & regulations
- Solar projects on public lands need several new political reviews at Department of the Interior
- FY25 SETO spending cut to \$42M; FY26 appropriations (<u>House</u>) \$115M:
 - Direction: \$9M CdTe, \$10M R&D and \$15M mfg. PVSK, \$5M recycling

Impact of IRA on RE Workforce

- ≈ 80% of the private investment announcements spurred by IRA occurred in Republican districts
- Treasury stated IRA investments are expected to support 1.5 million jobs over the next decade, based on analysis by the Labour Energy Partnership

Projects By Congressional District

Party	Projects	Investments	Jobs
Republican	224	\$109,630,229,000	83,115
Democratic	118	\$19,486,500,000	28,834
Undefined	20	\$3,031,800,000	4,510

Source: E2

Other

- AMC Upskill Prize Round 2 (\$7.75M) still up in the air
- 7/8 Supreme Court lifts ban on 107,000 federal workforce reduction plans; DOE included in list of Administration's priority
- FY26 \$0 budget request for SETO & <u>7/17 House Committee on Appropriations</u> proposed \$1.85B (38%) cut to EERE
- 1/20/2025 reinstating <u>EO 13957</u>: Schedule F

Domestic Availability of

Input Materials

- *Available
- *Currently no domestic supply but available from allied trade partners *No domestic availability for rolled, c-Si front and back glass, low-Fe float available, glass for TF PV available to meet 100% of demand

- Quartz
- Prebaked electrode
- Coal

- Graphite
 - chuck
- Gases (HCl, N₂, H₂, Cl₂)
- Hot zone*
- Crucible
- Ar

- Diamond Ag paste*
- wire Screens
 - Chemicals (wet & gases)
 - Gases
 - Quartzware*

- Glass⁺
- Encapsulant
- J-box adhesive and potting material
- Frames, Al and steel
- Frame adhesive
- Junction box, ribbons, Cu wires, etc.

Agenda

- 1 Six factors for a sustainable domestic PV Ecosystem / Worldwide status
- 2 Post-IRA Era
- 3 Cost competitiveness of the USA
- 4 Does it still make sense to invest in solar in the USA?
- 5 Worldwide examples

Conclution

- No need for more module capacity; need to achieve better utilization for existing module capacity; some module assembly operations likely to close down
- Despite policy uncertainty, now is the time to invest in ingot/wafer and cell
- Invest in your workforce: training training, education, and retention of your skilled workforce for the expected largest employment sector within electric power generation category
- FEOC language might finally give non-PRC equipment vendors a chance for a more leveled playing field
- Need to time ingot/wafer capacity to equipment vendor capacity and be open for phased quotas for PRC equipment (incl. crucibles and diamond wires)
- Need to lobby for public funding sustaining RD&D
- While UPV is likely not impacted due to rising demand and advantages of PV+ESS, DG PV will need public support

RCT Solutions GmbH

Line-Eid-Strasse 1 D-78467 Konstanz, Germany

Regd. HRB 708952, Executive Board: Dr. Peter Fath

Get in touch with us

Phone +49 7531 58470 12 info@rct-solutions.com

rct-solutions.com

Confidential

Thank you

Appendix

Exploring the PV supply chain landscape, this section highlights the details of local manufacturing, offering insights into current market trends and future opportunities for growth.

One-Stop Renewable Solutions Partner

The PV ecosystem

Local integrated manufacturing along the value chain

Supply Chain / Materials

Technology / R & D / Institutes

Training / Skills

Projected solar cell technology share till 2030

Projected Market Share of Cell Technologies

- BSF technology has completely phased off in 2024.
- PERC dominated till 2023 but it has only 22% market share in 2024 and expected to be phased out by 2027-2028.
- TOPCon is the new mainstream with more than 60% market share by end of 2024 and expected to hold major market share by 2030.
- SHJ technologies slowly gaining momentum and expected to have less than 20% market share by end of 2030 whereas XBC technology will have steady increase with more than 20% market share at the end of 2030.
- Perovskite/Si tandem may get 1-2% market share by 2030 if the technological problems are mitigated.

Solar cell efficiency limits & status

Potential & production efficiency for different solar cell technologies in 2024

^{*-} Efficiency can be higher by 0.6-0.7% abs

Overview of Current Solar Cell Concepts

Technology	PERC SE	TOPCon	НЈТ	ТВС
Description	Passivated Emitter and Rear Cell with Selective Emitter	Tunnel Oxide Passivated Contact Solar Cell with LECO	Silicon H etero J unction Solar Cell T echnology	TOPCon Back Contact Solar Cell with partial Cu metallization
Production Capacity	250 GW	500-700+ GW	50 – 70+ GW	(10 - 20 GW, for XBC)
Cell Eff. (Fab-Theoretical)	23.2% → 24.5%*	25.0% → 27.1%*	25.2% → 28.5%*	25.5% → 29.1 %**
Cell Structure	SiN _x (ARC) Ag Contact Emitter (n+) Selective Emitter (n++) AlO ₂ SiN _x Local BSF Al Contact	SiN _x (ARC) Ag Contact Emitter (p ⁺) Selective Emitter (p ⁺⁺) Ultrathin Ox. n ⁺ poly-Si SiN _x Ag Contact	a-Si (n ⁺) a-Si (i) n-type Si a-Si (p ⁺) ITO	AlO ₂ /SiN _x (ARC) Float.Em./FSF n-type Si p ⁺ poly-Si n ⁺ poly-Si

^{*-} Solar Energy Materials & Solar Cells 231 (2021) 111291, **- Solar Energy Materials & Solar Cells 238 111560