

Global Solar Technology Trends From Silicon to Modules

Dr. Radovan Kopecek, Andreas Halm et al.

International Solar Energy Research Center Konstanz

Agenda

1. ISC Konstanz R&D and technology ramp-up

2. c-Si PV tech

Market forecast (outside of China, in US)

Highest efficient modules

PV value chain

- a. Material (Si, ingot, wafer)
- b. Solar cells
- c. Modules
- d. Systems

Statements in PV arena

Hot R&D topics in PV arena

Employees at ISC Konstanz

70 7

Turnover 2025

8 Mio€ 7

Educated scientists

150 ↗

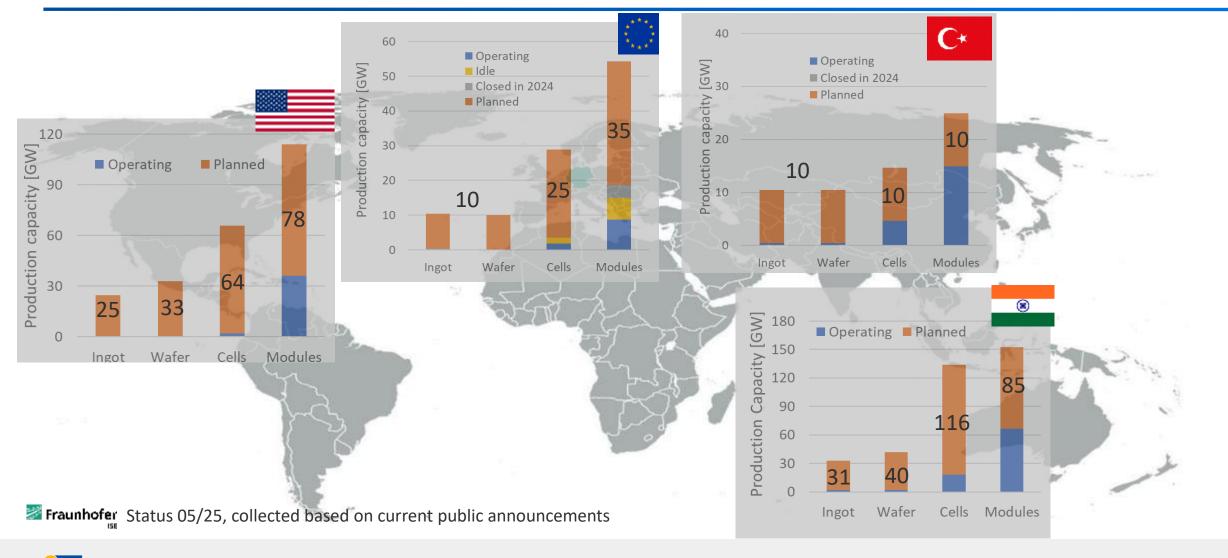
Achieved solar cell efficiency*

24.6% 7

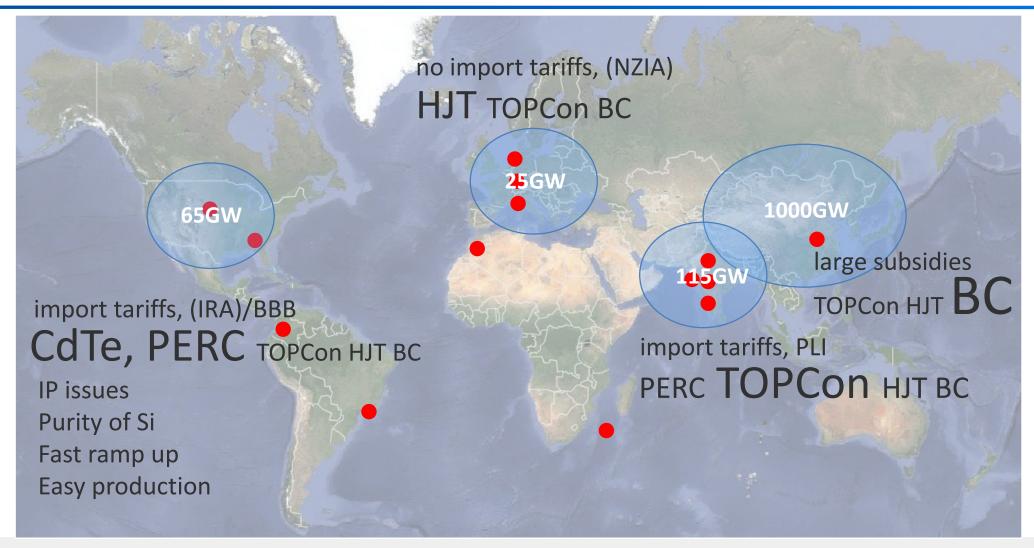
(Lab: 24.8%)

*in industrial manufacturing

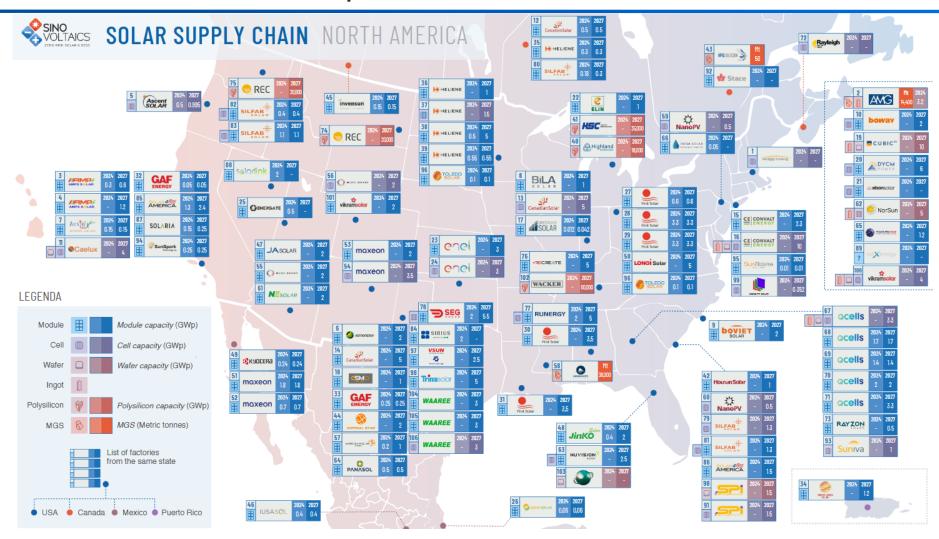
Transferred technology


7GW /

Technology transfer & Ramp-up service – track record

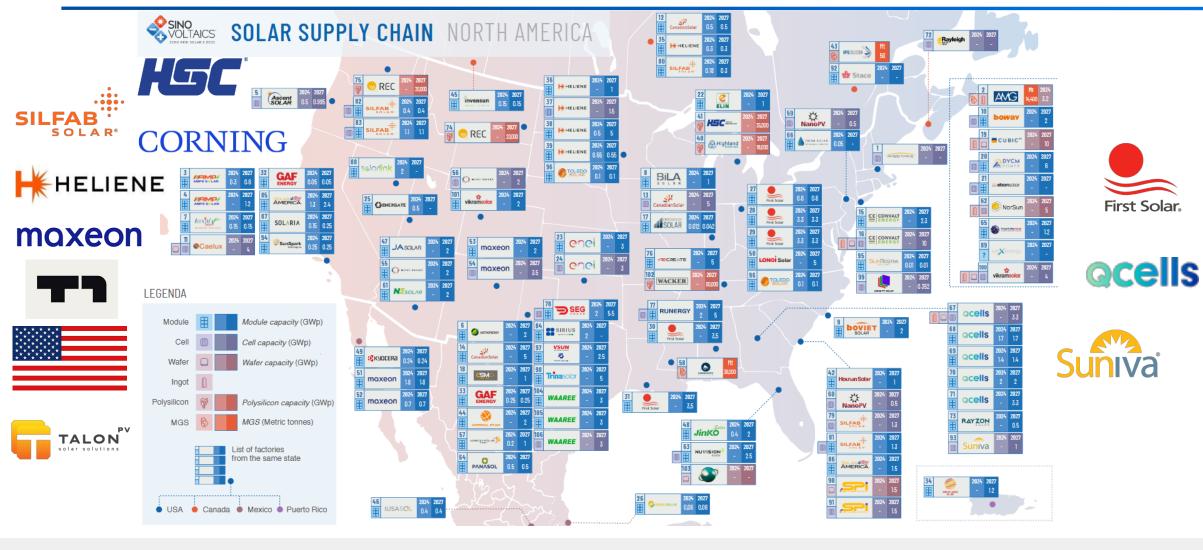

- ISC Konstanz has **20 years of experience** in development and industrialization of n-type cells concepts
- Successful process transfers into industry:
 - 2015 @ MegaCell, Italy
 - 2017 @ Adani, India
 - 2018 @ undisclosed Asian customer
 - 2020 @ SPIC, China
 - 2021 @ Valoe Solar, Lithuania
 - 2023 @ Asian customer, India
 - 2024 @ Asian customer, India
 - 2024 @ Asian customer, India
 - Ongoing @ Asian customer, India
 - Ongoing @ Suniva, US
 - Ongoing @ Asian customer, India

- → BiSoN (40MW nPERT technology successfully transferred)
- → BiSoN (80MW nPERT technology successfully transferred)
- → BiSoN converted to !!TOPCon!!
- → ZEBRA (200MW IBC technology transferred and in mass production)
- → ZEBRA (60MW IBC technology, ramp-up service)
- → PERC (2GW process optimisation on Asian process equipment)
- → PERC (450MW process optimisation on European process equipment)
- → TOPCon (2GW process optimisation on Asian process equipment)
- → TOPCon (1.2GW process optimisation on European process equipment)
- → PERC (1GW process optimisation on European process equipment)
- → TOPCon (500MW > 4GW process optimisation on European process equipment)


Total production capacity and forecast

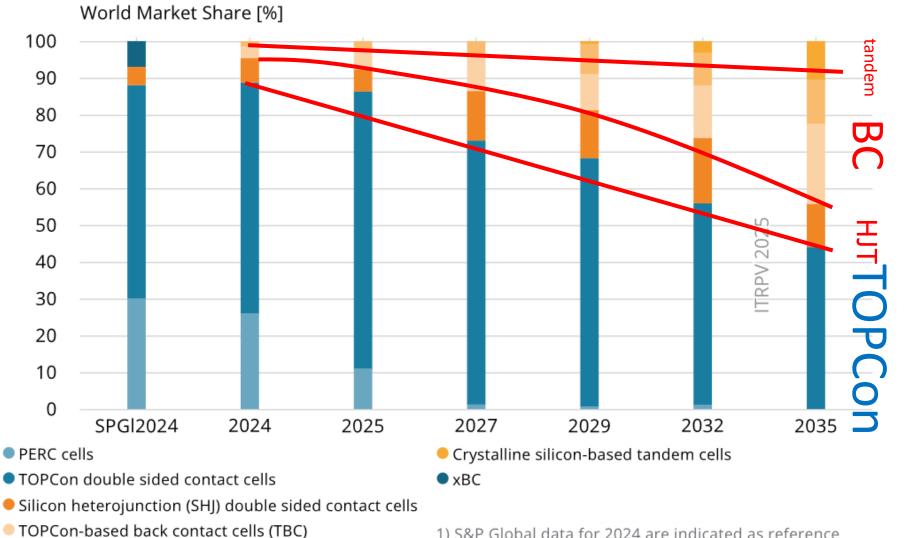
Total cell production until 2027 and ISC's projects •

Production landscape in NA



c-Si technology

Highest efficiency modules in August 2025


Rank	Company	Series	Model	Wafer	Cell	Cells	Cell Tech	Module	Power	Efficiency		
1	VIKO _€	Comet 2U	AIKO-G660-MCH72Mw	n-type	182	144	ABC	Half-cell, Back Contact	660	24.4		
2	LONGI	Hi-MO 9	LR8-66HYD 635-655M	n-type	182	132	НРВС	Bifacial, Half-cell, Back Contact	655	24.2	3 x BC	24+%
3	Maxeon	Maxeon 7	SPR-MAX7-445-PT	n-type	125	112	IBC	Back Contact, Full-cell	445	24.1	3 X DC	24 T/0
4	HUASUN	Himalaya	HS-210-B132D5730W	n-type	210	132	нјт	Bifacial, Half-cell, MBB	730	23.5		
5	JinKO	Tiger Neo	JKM625-630N-66HL4M-BDV	n-type	210R	132	TOPCon	Bifacial, Half-cell, MBB	630	23.32		
6	JASOLAR	DeepBlue 4.0 Pro	JAM72D40 600/MB	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	600	23.2		
7	ASTRONERGY	Astro N7	CHSM66RN(DG)/F-BH	n-type	182	132	TOPCon	Bifacial, Half-cell, MBB	625	23.1	LUT	22.0/
8	Trinasolar	Vertex N	TSM-NEG21C.20	n-type	210	132	TOPCon	Bifacial, Half-cell, MBB	715	23.0	HII	23+%
8	TW SOLAR		TWMHF-66HD700-715W	n-type	210	132	нјт	Bifacial, Half-cell, MBB	715	23.0	1 19 1	_
8	DMEGC	Infinity RT	DM620G12RT-B66HSW	n-type	210	132	TOPCon	Bifacial, Half-cell, MBB	620	23.0	TOPCon	23+%
11	Jetion Solar	Jeniüs	JT SLk(B) 690-710W	n-type	210	132	нјт	Bifacial, Half-cell, MBB	710	22.9	IUPCOII	25+70
12	@ Grand Sunergy	-	GSM-MH3/132-BHDG710	n-type	210	132	нјт	Bifacial, Half-cell, MBB	710	22.86		
13	TW SOLAR	-	TWMND-72HS575-590W	n-type	182	144	TOPCon	Half-cell, MBB	590	22.8		
13	₹ SPIC	ANDROMEDA 3.0	SPICN6(LDF)-60/BIH410W	n-type	166	120	TBC	Bifacial, Back Contact, Half-cell, MBB	410	22.8		
15	SolarSpace	Lumina II	SS8-72HD-585N	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	585	22.65		
16	REC Group	AlphA®Pure-RX	REC470AA Pure-RX	n-type	210	88	нјт	Bifacial, half-cell, MBB	470	22.6		
17	© GCL	-	GCL-NT12/66GDF	n-type	210	132	TOPCon	Bifacial, half-cell, MBB	700	22.53		
17	第中来股份	Niwa Pro	JW-HD108N415-440W	n-type	182	108	TOPCon	Bifacial, Half-cell, MBB	440	22.53	DFDC	21 F 220/
19	# risen	Hyper-ion	RSM132-8-700BHDG	n-type	210	132	нјт	Bifacial, Half-cell, MBB	700	22.5	PERC	21.5-22%
19	DASOLAR	-	DAS-DH156NA-620-630W	n-type	182	156	TOPCon	Bifacial, Half-cell, MBB	630	22.5		
19	Canadian Solar	TOPHiKu6	CS6W-570-580T	n-type	182	144	TOPCon	Half-cell, MBB	580	22.5		
19	Eging PV	STAR Pro	EG-580NT72-HL/BF-DG	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	580	22.5		
19	RUNERGY		HY-DH144N8	n-type	182	144	TOPCon	Bifacial, Half-cell, MBB	580	22.5		

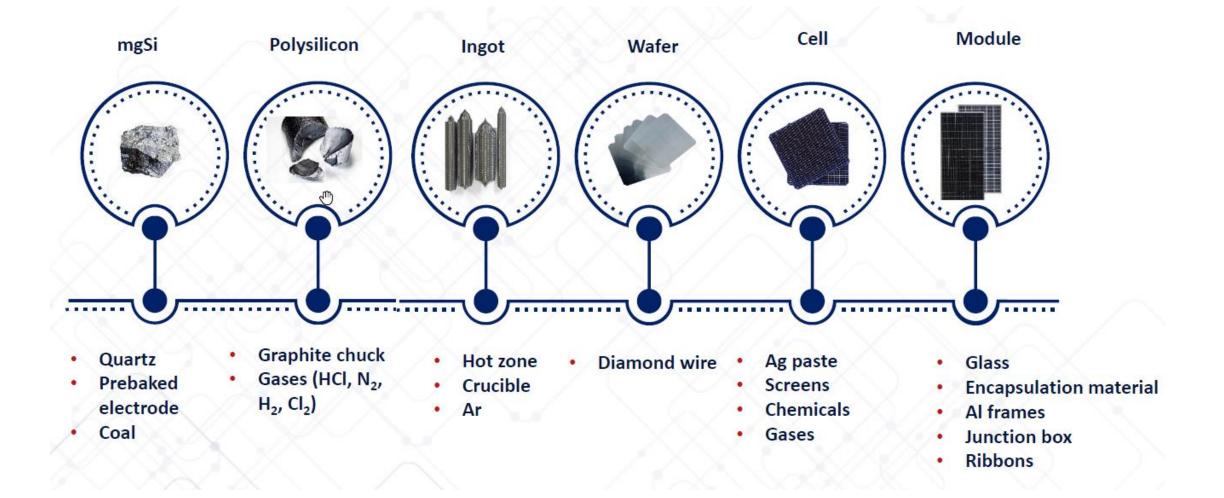
Different cell technologies

SHJ-based back contact cells (HBC)

For GW-scale device and equipment manufacturers

28+%

25+%


24+% 24+%

21.5-22%

1) S&P Global data for 2024 are indicated as reference

2) xBC from S&P Global data includes HBC and TBC

c-Si PV value chain

Si material: from p-type to n-type

Poly-Si: Siemens, FBR and other (e.g. UMG-Si/Highland) > electronic grade purity necessary (10N+)

Ingot: Recharged Cz-Si, P, Sb (Tai Ray) doping, 2+ms (wafer) lifetime

Wafer: M10/G12 families, 130µm thickness direct wafer (NexWafe)

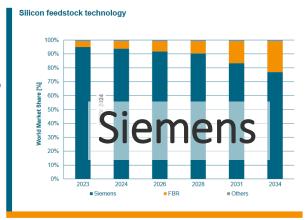


Fig. 2: Expected world market share of poly-Si feedstock technology.

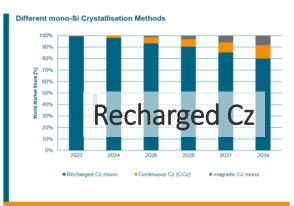
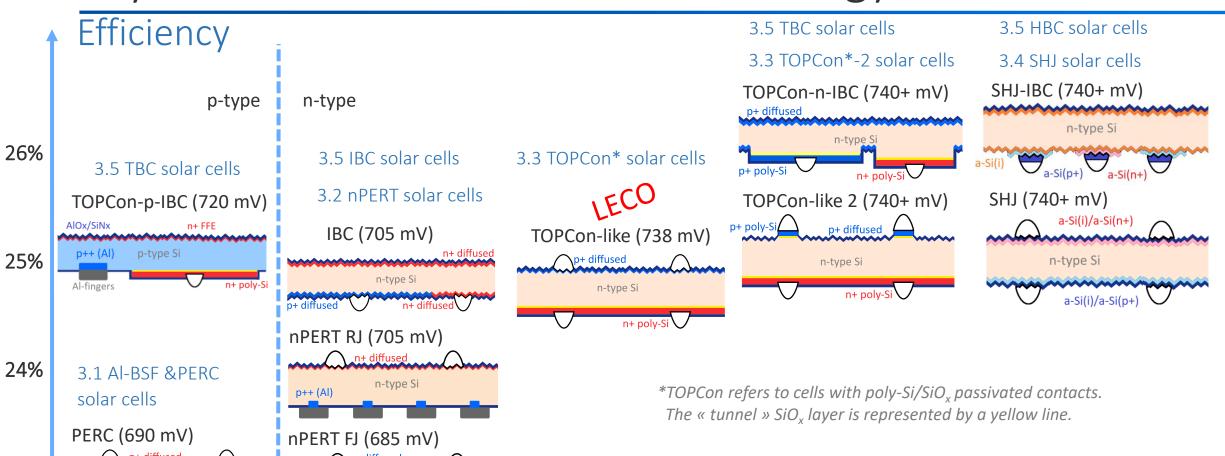
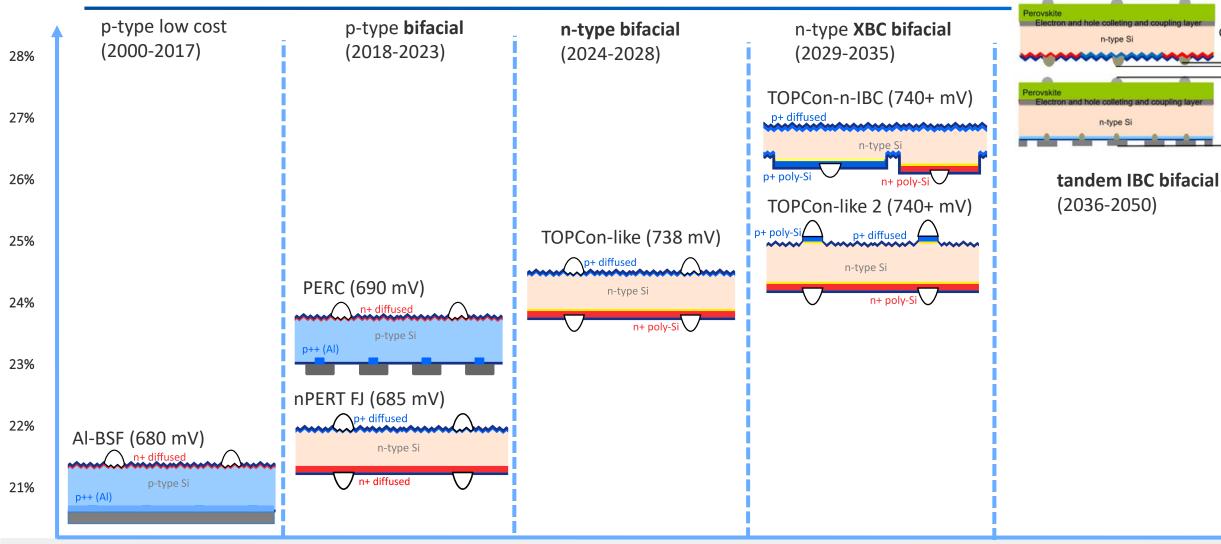



Fig. 5: Different mono-Si crystallization methods

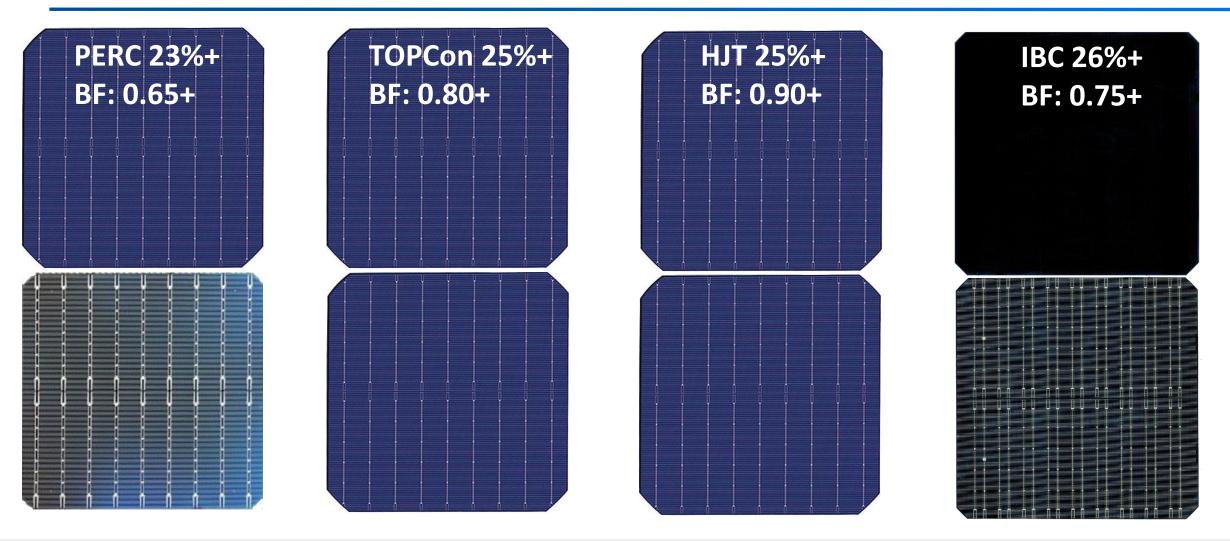
Crystalline silicon solar cell technology

Improvements of surface passivation


23%

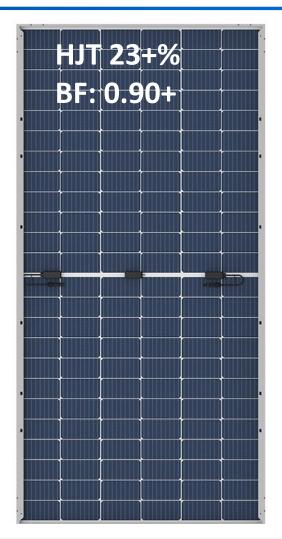
p-type Si

n-type Si


n+ diffused

Crystalline silicon solar cell technology

n-type Si


Solar cell pictures of PERC, TOPCon, HJT and IBC

Rear side module pictures of PERC, TOPCon, HJT and IBC

Module technology: what is the trend?

half cell, 1/3 cell technology negative gap

OBB technology bifacial BC

led free (gluing instead of solder) Cu metallization

from 3mm to 2mm glass Laser processing

smart modules large "floppy" modules

steel frames

PV systems: applications


PV systems: applications

World Market Share of monofacial and bifacial modules

- Bifacial c-Si modules with bifacial cells
- Monofacial c-Si modules with bifacial cells
- Monofacial c-Si modules with monofacial cells

08.09.2025

PV systems: bifacial applications and gains

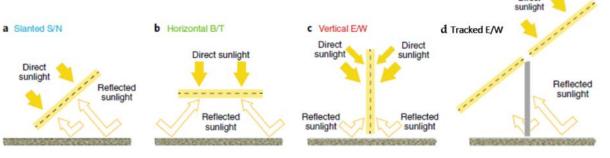
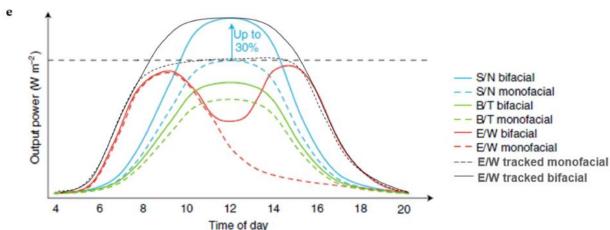



Table 2. Energy gains in systems using tracking and bifacial modules [20].

Installation Geometry	Monofacial [%]	Bifacial [%]
Fixed tilt (flat roof)	100	105–115
Fixed tilt (utility scale)	100	107–130
Vertical (utility scale)	40–50	95–140 *
HSAT	110–122	117–145

^{*} comparison with monofacial fixed tilt.

hifacial gains of 5-30%

Figure 5. (a–d) possibilities for installations of bifacial modules and (e) comparison of power generation curves for monofacial and bifacial modules [16]. S/N means South/North, B/T is Bottom/Top and E/W is East/West.

R Kopecek; J Libal, <u>Towards large-scale deployment of bifacial photovoltaics</u> Nature Energy 3 (6), 443-446, **2018**

R Kopecek; J Libal, Bifacial Photovoltaics 2021: Status, Opportunities and Challenges, Energies, 14, 2076, 2021 https://doi.org/10.3390/en14082076

Statements in PV arena

"For new cells Siemens and FBR material purity must be electronic grade."

"TaiRay is the future!"

"Laser tech is the future."

"PV developed from low cost Si-material and Al-BSF to electronic grade material/wafers and selective processes."

"LECO killed HJT!"

"TOPCon with LPCVD, PECVD, PVD is similar."

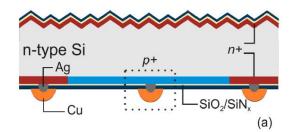
"The last step to **TBC** as mainstream is the development of low cost effective insitu p-poly!"

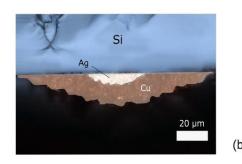
"Tandem will need much more time for large GW scale!"

"Energy transition will be driven by c-Si tech with

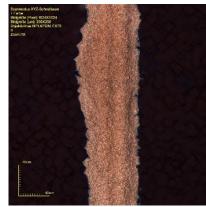
80TW total installations until 2050!"

"AI is the future."




Statements in PV arena

"For new cells Siemens and FBR material purity must tronic grade." "Laser tech is "TaiRay is the future!" the future." "PV developed from low or electronic grade "The last s cost effective e time for large GW scale!" "Tandem w "Al is the will be driven by c-Si tech with future." 80TW total installations until 2050!"


Hot R&D topics in PV arena

- Direct wafer
- Edge passivation
- Additives for advanced chemistry
- Cu metallization
- Bifacial BC technology
- Tandem technology
- Shingling tech
- Conductive adhesives
- Laser module production
- c-Si space cells and modules

© ISC Konstanz e.V. RE+ / Taiyang News Conference

Thank you for listening