

Mathematics

REVISION and MODEL QUESTIONS

41). A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use $\pi = 3.14$ and $\sqrt{3} = 1.73$)

Soln: (.....Contd)

$$\therefore OD = 6 \text{ cm}$$

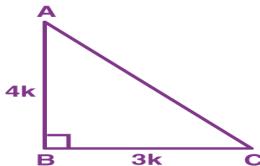
So, the area of $\Delta AOB = \frac{1}{2} \times \text{base} \times \text{height}$

Here, base = $AB = 12\sqrt{3}$ and

Height = $OD = 6$

$$\text{So, area of } \Delta AOB = \frac{1}{2} \times 12\sqrt{3} \times 6 = 36\sqrt{3} \text{ cm}^2$$

$$= 62.28 \text{ cm}^2$$


$$\therefore \text{area of the corresponding Minor segment} = \\ = \text{Area of the Minor sector} - \text{Area of } \Delta AOB \\ = 150.72 \text{ cm}^2 - 62.28 \text{ cm}^2 = 88.44 \text{ cm}^2$$

42) If $3 \cot A = 4$, check whether

$$(1 - \tan^2 A)/(1 + \tan^2 A) = \cos^2 A - \sin^2 A \text{ or not.}$$

Soln:

Let us consider a triangle ABC, right-angled at B.

Given, $3 \cot A = 4$

$$\cot A = 4/3$$

Since, $\tan A = 1/\cot A$

$$\tan A = 1/(4/3) = 3/4$$

$$BC/AB = 3/4$$

Let $BC = 3k$ and $AB = 4k$

By using Pythagoras theorem, we get;

$$\text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2$$

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = (4k)^2 + (3k)^2$$

$$AC^2 = 16k^2 + 9k^2$$

$$AC = \sqrt{25k^2} = 5k$$

$\sin A = \text{Opposite side}/\text{Hypotenuse}$

$$= BC/AC$$

$$= 3k/5k$$

$$= 3/5$$

In the same way,

$\cos A = \text{Adjacent side}/\text{hypotenuse}$

$$= AB/AC$$

$$= 4k/5k$$

$$= 4/5$$

To check: $(1 - \tan^2 A)/(1 + \tan^2 A) = \cos^2 A - \sin^2 A$

or not

Let us take L.H.S. first;

$$(1 - \tan^2 A)/(1 + \tan^2 A) = [1 - (3/4)^2]/[1 + (3/4)^2] \\ = [1 - (9/16)]/[1 + (9/16)] = 7/25$$

$$\text{R.H.S.} = \cos^2 A - \sin^2 A = (4/5)^2 - (3/5)^2 \\ = (16/25) - (9/25) = 7/25$$

Since, L.H.S. = R.H.S

. Hence, proved.

43) Two dice are numbered 1, 2, 3, 4, 5, 6 and 1, 1, 2, 2, 3, 3, respectively. They are thrown, and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Soln: Number of total outcome = $n(S) = 36$

(i) Let E_1 be the event 'getting sum 2'

Favourable outcomes for the event

$$E_1 = \{(1,1), (1,1)\}$$

$$n(E_1) = 2$$

$$P(E_1) = n(E_1)/n(S) = 2/36 = 1/18$$

(ii) Let E_2 be the event 'getting sum 3'

Favourable outcomes for the event

$$E_2 = \{(1,2), (1,2), (2,1), (2,1)\}$$

$$n(E_2) = 4$$

$$P(E_2) = n(E_2)/n(S) = 4/36 = 1/9$$

(iii) Let E_3 be the event 'getting sum 4'

Favourable outcomes for the event

$$E_3 = \{(2,2), (2,2), (3,1), (3,1), (1,3), (1,3)\}$$

$$n(E_3) = 6$$

$$P(E_3) = n(E_3)/n(S) = 6/36 = 1/6$$

(iv) Let E_4 be the event 'getting sum 5'

Favourable outcomes for the event

$$E_4 = \{(2,3), (2,3), (4,1), (4,1), (3,2), (3,2)\}$$

$$n(E_4) = 6$$

$$P(E_4) = n(E_4)/n(S) = 6/36 = 1/6$$

(v) Let E_5 be the event 'getting sum 6'

Favourable outcomes for the event

$$E_5 = \{(3,3), (3,3), (4,2), (4,2), (5,1), (5,1)\}$$

$$n(E_5) = 6$$

$$P(E_5) = n(E_5)/n(S) = 6/36 = 1/6$$

(vi) Let E_6 be the event 'getting sum 7'

Favourable outcomes for the event

$$E_6 = \{(4,3), (4,3), (5,2), (5,2), (6,1), (6,1)\}$$

$$n(E_6) = 6$$

$$P(E_6) = n(E_6)/n(S) = 6/36 = 1/6$$

(vii) Let E_7 be the event 'getting sum 8'

Favourable outcomes for the event

$$E_7 = \{(5,3), (5,3), (6,2), (6,2)\}$$

$$n(E_7) = 4$$

$$P(E_7) = n(E_7)/n(S) = 4/36 = 1/9$$

(viii) Let E_8 be the event 'getting sum 9'

Favourable outcomes for the event

$$E_8 = \{(6,3), (6,3)\}$$

$$n(E_8) = 2$$

$$P(E_8) = n(E_8)/n(S) = 2/36 = 1/18$$

44) Check whether – 150 is a term of the AP:

11, 8, 5, 2 . . .

Soln: Given AP: 11, 8, 5, 2, . . .

First term, $a = 11$

Common difference, $d = a_2 - a_1 = 8 - 11 = -3$

Let –150 be the n th term of this AP.

As we know, for an AP,

$$a_n = a + (n - 1)d$$

$$-150 = 11 + (n - 1)(-3)$$

$$-150 = 11 - 3n + 3$$

$$\Rightarrow -164 = -3n$$

$$\Rightarrow n = 164/3$$

Clearly, n is not an integer but a fraction.

Therefore, –150 is not a term of the given AP.
tower = 42 m.