ಎಸ್ಎಸ್ಎಲ್ಸಿ-ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ

MATHEMATICS: Circles

Exercise: 10.1

13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans: (......Contd)

Taking 2 as common and solving, we get

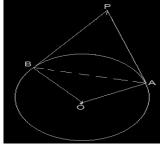
 $(\angle 1 + \angle 2) + (\angle 5 + \angle 6) = 180^{\circ}$

Thus, $\angle AOB + \angle COD = 180^{\circ}$

Similarly, it can be proved that∠BOC+∠DOA= 180° Therefore, the opposite sides of any quadrilateral which is circumscribing a given circle will subtend supplementary angles at the centre of the circle.

14. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

Ans: First, draw a circle with centre O. Choose an external point P and draw two tangents, PA and PB, at point A and point B, respectively. Now, join A and B to make AB in a way that subtends ∠AOB at the centre of the circle. The diagram is as follows:



From the above diagram, it is seen that the line segments OA and PA are perpendicular.

So, $\angle OAP = 90^{\circ}$

In a similar way, the line segments OB \perp PB and so, \angle OBP = 90°

Now, in the quadrilateral OAPB,

∴ \triangle APB+ \triangle OAP + \triangle PBO + \triangle BOA = 360° (since the sum of all interior angles will be 360°)

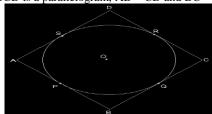
By putting the values, we get,

 $\angle APB + 180^{\circ} + \angle BOA = 360^{\circ}$

So, $\angle APB + \angle BOA = 180^{\circ}$ (Hence proved).

15. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans: Consider a parallelogram ABCD which is circumscribing a circle with a centre O. Now, since ABCD is a parallelogram, AB = CD and BC = AD.



From the above figure, it is seen that,

(i) DR = DS

(ii) BP = BO

(iii) CR = CQ

(iv) AP = AS

These are the tangents to the circle at D, B, C, and A, respectively.

Adding all these, we get

DR+BP+CR+AP = DS+BQ+CQ+AS

By rearranging them, we get

(BP+AP)+(DR+CR) = (CQ+BQ)+(DS+AS)

Again by rearranging them, we get

AB+CD = BC+AD

Now, since AB = CD and BC = AD, the above equation becomes

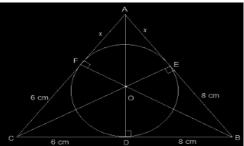
2AB = 2BC

 $\therefore AB = BC$

Since AB = BC = CD = DA, it can be said that ABCD is a rhombus.

12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8cm and 6cm, respectively (see Fig. 10.14). Find the sides AB and AC.

Ans: The figure given is as follows:



Consider the triangle ABC,

We know that the length of any two tangents which are drawn from the same point to the circle is equal. So

- (i) CF = CD = 6 cm
- (ii) BE = BD = 8 cm
- (iii) AE = AF = x

Now, it can be observed that,

- (i) AB = EB + AE = 8 + x
- (ii) CA = CF + FA = 6 + x
- (iii) BC = DC + BD = 6 + 8 = 14

Now the semi-perimeter "s" will be calculated as follows

$$2s = AB + CA + BC$$

By putting the respective values, we get,

$$2s = 28 + 2x$$
$$s = 14 + x$$

Area of
$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$

By solving this, we get,

$$=\sqrt{(14+x)48x}$$
(i)

Again, the area of $\triangle ABC = 2 \times \text{area of } (\triangle AOF + \triangle ACOB) + \triangle ACOB + ACOB + \triangle ACOB + ACOB$

 $\triangle COD + \triangle DOB)$

 $= 2 \times [(\frac{1}{2} \times OF \times AF) + (\frac{1}{2} \times CD \times OD) + (\frac{1}{2} \times DB \times OD)]$

 $= 2 \times \frac{1}{2}(4x + 24 + 32) = 56 + 4x$ (ii)

Now from (i) and (ii), we get,

 $\sqrt{(14+x)48x} = 56+4x$

Now, square both sides, (Contd......)