ಎಸ್ಎಸ್ಎಲ್ಸಿ-ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ

MATHEMATICS: Circles

Exercise: 10.1

11. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans: Consider a parallelogram ABCD which is circumscribing a circle with a centre O. Now, since ABCD is a parallelogram, AB = CD and BC = AD.



From the above figure, it is seen that,

- (i) DR = DS
- (ii) BP = BQ
- (iii) CR = CQ
- (iv) AP = AS

These are the tangents to the circle at D, B, C, and A, respectively.

Adding all these, we get

DR+BP+CR+AP = DS+BQ+CQ+AS

By rearranging them, we get

(BP+AP)+(DR+CR) = (CQ+BQ)+(DS+AS)

Again by rearranging them, we get

AB+CD = BC+AD

Now, since AB = CD and BC = AD, the above equation becomes

2AB = 2BC

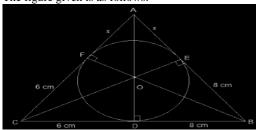
AB = BC

Since AB = BC = CD = DA, it can be said that ABCD is a rhombus.

12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm, respectively (see Fig. 10.14). Find the sides AB and AC.

Ans:

The figure given is as follows:



Consider the triangle ABC,

We know that the length of any two tangents which are drawn from the same point to the circle is equal. So,

- (i) CF = CD = 6 cm
- (ii) BE = BD = 8 cm
- (iii) AE = AF = x

Now, it can be observed that,

(i) AB = EB + AE = 8 + x

(ii)
$$CA = CF + FA = 6 + x$$

(iii)
$$BC = DC + BD = 6 + 8 = 14$$

Now the semi-perimeter "s" will be calculated as follows

2s = AB + CA + BC

By putting the respective values, we get,

2s = 28 + 2x

s = 14 + x

Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$

By solving this, we get,

 $=\sqrt{(14+x)48x}$ (i)

Again, the area of $\triangle ABC = 2 \times \text{area of } (\triangle AOF + \triangle COD + \triangle DOB)$

 $= 2 \times [(\frac{1}{2} \times OF \times AF) + (\frac{1}{2} \times CD \times OD) + (\frac{1}{2} \times DB \times OD)]$

 $= 2 \times \frac{1}{2} (4x + 24 + 32) = 56 + 4x$ (ii)

Now from (i) and (ii), we get,

 $\sqrt{(14+x)48x} = 56+4x$

Now, square both sides,

 $48x(14+x) = (56+4x)^2$

 $48x = [4(14+x)]^2/(14+x)$

48x = 16(14+x)

48x = 224 + 16x

32x = 224

x = 7 cm

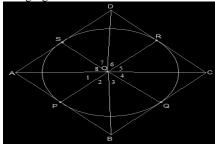
So, AB = 8+x

i.e. AB = 15 cm

And, CA = x+6 = 13 cm.

13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans: First, draw a quadrilateral ABCD which will circumscribe a circle with its centre O in a way that it touches the circle at points P, Q, R, and S. Now, after joining the vertices of ABCD, we get the following figure:



Now, consider the triangles OAP and OAS.

AP = AS(They are the tangents from the same point A)

OA = OA (It is the common side)

OP = OS (They are the radii of the circle)

So, by SSS congruency $\triangle OAP \cong \triangle OAS$

So, $\angle POA = \angle AOS$

Which implies that $\angle 1 = \angle 8$

Similarly, other angles will be

 $\angle 4 = \angle 5$

 $\angle 2 = \angle 3$

∠6 = ∠7

Now by adding these angles, we get

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$

Now by rearranging,

 $(\angle 1 + \angle 8) + (\angle 2 + \angle 3) + (\angle 4 + \angle 5) + (\angle 6 + \angle 7) = 360^{\circ}$

 $2\angle 1 + 2\angle 2 + 2\angle 5 + 2\angle 6 = 360^{\circ}$ (Contd.....)