ಎಸ್ಎಸ್ಎಲ್ಸಿ-ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ

MATHEMATICS: Circles

Exercise: 10.1

3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is:

(A) 12 cm

(B) 13 cm

(C) 8.5 cm

(D) $\sqrt{119}$ cm

Ans:-

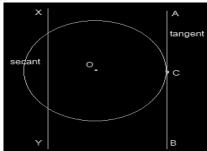
s:- (....Contd)

$$OO^2 = OP^2 + PO^2$$

$$OQ^2 = OP^2 + PQ$$

 $(12)^2 = 5^2 + PQ^2$

$$PQ^2 = 144 - 25$$


$$PQ^2 = 119$$

 $PQ = \sqrt{119} \text{ cm}$

So, **option D**, i.e., $\sqrt{119}$ cm, is the length of PQ.

4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

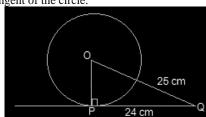
In the above figure, XY and AB are two parallel lines. Line segment AB is the tangent at point C, while line segment XY is the secant.

Exercise: 10.2

In Q.1 to 3, choose the correct option and give a justification.

1. From point Q, the length of the tangent to a circle is 24 cm, and the distance of O from the centre is 25 cm. The radius of the circle is.....

(A) 7 cm


(B) 12 cm

(C) 15 cm

(D) 24.5 cm

Ans:

First, draw a perpendicular from the centre O of the triangle to a point P on the circle, which is touching the tangent. This line will be perpendicular to the tangent of the circle.

So, OP is perpendicular to PQ, i.e., OP \perp PQ From the above figure, it is also seen that $\triangle OPQ$ is a right-angled triangle.

It is given that

OQ = 25 cm and PQ = 24 cm

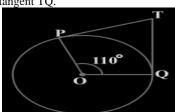
By using Pythagoras' theorem in $\triangle OPQ$,

$$OQ^2 = OP^2 + PQ^2$$

 $(25)^2 = OP^2 + (24)^2$
 $OP^2 = 625 - 576$
 $OP^2 = 49$

OP = 7 cm

So, option A, i.e., 7 cm, is the radius of the given


2. In Fig. 10.11, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ =$ 110 $^{\circ}$, then $\angle PTQ$ is equal to

 $(B) 70^{\circ}$

(C)
$$80^{\circ}$$
 (D) 90°

Ans:

From the question, it is clear that OP is the radius of the circle to the tangent PT, and OQ is the radius to the tangent TQ.

So, OP \perp PT and TQ \perp OQ

$$\therefore \angle OPT = \angle OOT = 90^{\circ}$$

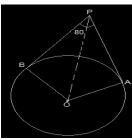
Now, in the quadrilateral POQT, we know that the sum of the interior angles is 360°.

So, $\angle PTQ + \angle POQ + \angle OPT + \angle OQT = 360^{\circ}$

Now, by putting the respective values, we get
$$\angle PTQ + 90^{\circ} + 110^{\circ} + 90^{\circ} = 360^{\circ}$$

$$\angle PTQ = 70^{\circ}$$

So, $\angle PTQ$ is 70° which is option B.


3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then ∠ POA is equal to

> $(A) 50^{\circ}$ $(C) 70^{\circ}$

 $(B) 60^{\circ}$ $(D) 80^{\circ}$

Ans:

First, draw the diagram according to the given

Now, in the above diagram, OA is the radius to tangent PA, and OB is the radius to tangent PB. So, OA is perpendicular to PA, and OB is

perpendicular to PB, i.e., $OA \perp PA$ and $OB \perp PB$. So, $\angle OBP = \angle OAP = 90^{\circ}$

Now, in the quadrilateral AOBP,

The sum of all the interior angles will be 360°.

So, $\angle AOB + \angle OAP + \angle OBP + \angle APB = 360^{\circ}$

Putting their values, we get

$$\angle AOB + 260^{\circ} = 360^{\circ}$$

$$\angle AOB = 100^{\circ}$$
 (Contd.....)