ಎಸ್ಎಸ್ಎಲ್ಸಿ-ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ

MATHEMATICS Chapter-1 Arithmetic Progression

- 6) A manufacturer of TV sets produced 600 sets in the third year and 700 sets in the seventh year. Assuming that the production increases uniformly by a fixed number every year, find:
- (i) the production in the 1st year
- (ii) the production in the 10th year
- (iii) the total production in first 7 years

Soln:

$$d = 25$$
 and $a = 550$.

Therefore, production of TV sets in the first year is 550.

(ii) Now

$$a_{10} = a + 9d = 550 + 9 \times 25 = 775$$

So, production of TV sets in the 10th year is 775.

(iii) Also,

$$S_7 = \frac{7}{2} [2x550 + (7-1)25]$$
$$= \frac{7}{2} [1100 + 150] = 4375$$

Thus, the total production of TV sets in first 7 years is 4375

EXERCISE 5.3

1. Find the sum of the following APs:

- (i) 2, 7, 12, . . ., to 10 terms.
- (ii) $-37, -33, -29, \dots$, to 12 terms.
- (iii) 0.6, 1.7, 2.8, . . ., to 100 terms.

(iv)
$$\frac{1}{15}, \frac{1}{12}, \frac{1}{10}$$
.....to 11 terms

Soln:-

(i) 2, 7, 12, . . ., to 10 terms.

Here a=2 d=7-2=5 n=10

We know that

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{10} = \frac{10}{2} [2x2 + (10-1)5]$$

$$S_{10} = 5[4 + 45] = 245$$

So, the sum of the first 10 term of the given AP is 245

(ii) $-37, -33, -29, \dots$, to 12 terms.

Here a = -37

$$d = -33 - (-37) = 5$$
 $n = 12$

We know that

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{12} = \frac{12}{2} [2(-37) + (12-1)4]$$

$$S_{12} = 6[-74 + 44]$$

= 6(-30) = -180So,the sum of the first 12 term of the given AP is -180

(iii) 0.6, 1.7, 2.8, . . ., to 100 terms.

Here a= 0.6 d= 1.7-(0.6) = 1.1 n= 100

We know that

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{100} = \frac{100}{2} [2(0.6) + (100 - 1)(1.1)]$$

$$S_{100} = 50[1.2 + 108.9]$$

$$= 50(110.1)$$

$$= 5505$$

So, the sum of the first 100 term of the given AP is 5505

(iv)
$$\frac{1}{15}, \frac{1}{12}, \frac{1}{10}$$
.....to 11 terms

Here a= 1/15

$$d = \frac{1}{12}, -\frac{1}{15} = \frac{1}{60}$$

n= 1

We know that

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$S_{11} = \frac{11}{2} \left[2\left(\frac{1}{15}\right) + (11-1)\left(\frac{1}{60}\right) \right]$$

$$S_{11} = \frac{11}{2} \left(\frac{2}{15} + \frac{1}{6}\right)$$

$$S_{11} = \frac{11}{2} \left(\frac{3}{10}\right)$$

$$S_{11} = \frac{33}{20}$$

So, the sum of the first 11 term of the given AP is 33/20 2. Find the sums given below:

(i)
$$7+10\frac{1}{2}+14+\dots+84$$

(ii) $34 + 32 + 30 + \ldots + 10$

(iii)
$$-5 + (-8) + (-11) + \dots + (-230)$$

Soln:-

(i)
$$7+10\frac{1}{2}+14+\dots+84$$

Here a= 7

$$d = 10\frac{1}{2} - 7 = 3\frac{1}{2} = \frac{7}{2}$$

Let the number of terms of the AP be n , We know that I = a + (n-1)d

$$84 = 7 + (n-1)\frac{7}{2}$$

$$= (n-1)\frac{7}{2} = 84 - 7$$

$$(n-1) = 22$$

$$n = 22 + 1$$

$$n = 23$$

We know that

$$S_n = \frac{n}{2}[a+l]$$

$$S_{23} = \frac{23}{2}[7+84]$$

$$S_{23} = \frac{2093}{2}$$

Hence The required Sum is $1046\frac{1}{2}$

(ii) $34 + 32 + 30 + \dots + 10$

Soln:- Here a= 34

$$d = 32 - 34 = -2$$
 $l = 10$

Let the number of terms of the AP be n, We know that I = a + (n-1)d

$$10 = 34 + (n-1)(-2)$$

$$= (n-1)(-2) = -12$$

$$(n-1) = \frac{-24}{-2} = 12$$

$$n = 13$$

We know that

$$S_n = \frac{n}{2}[a+l] \qquad (Contd....)$$