ಎಸ್ಎಸ್ಎಲ್ಸಿ-ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ

MATHEMATICS Chapter-5

Arithmetic Progression

To find nth term of an A.P

EXERCISE 5.2

1. Fill in the blanks in the following table, given that a is the first term, d the common difference and a n the nth term of the AP:

· · · · · · · · · · · · · · · · · · ·							
	а	d	n	an			
(i)	7	3	8				
(ii)	- 18		10	0			
(iii)		-3	18	- 5			
(iv)	- 18.9	2.5		3.6			
(v)	3.5	0	105				

Coln

(i)
$$a_n = a + (n-1)d$$

= $7 + (8-1)3$
= $7 + (7)3$
= $7 + 21$

$$a_{n} = 28$$

(ii)
$$a_n = a + (n-1)d$$

 $0 = -18 + (10-1)d$
 $18 = 9d$

$$d = \frac{18}{9} = 2$$

a = 46

(iii)
$$a_n = a + (n-1)d$$

 $-5 = a + (18-1) (-3)$
 $-5 = a - 51$
 $a = 51 - 5$

(iv)
$$a_n = a + (n-1)d$$

 $3.6 = -18.9 = (n-1)25$

$$3.6+18.9 = (n-1)(2.5)$$

 $22.5 = (n-1)(2.5)$

$$n-1 = \frac{22.5}{2.5}$$

$$= n-1 = 9$$

$$n-1 = 9+1$$

(v)
$$a_n = a + (n-1)d$$

= 3.5 + (105-1)0

n = 10

$$a_n = 3.5$$

	11			
	a	d	n	an
(i)	7	3	8	28
(ii)	- 18	2	10	0
(iii)	46	- 3	18	- 5
(iv)	- 18.9	2.5	10	3.6
(v)	3.5	0	105	3.5
, ,				

2. Choose the correct choice in the following and justify:

(i) 30th term of the AP: $10, 7, 4, \ldots$, is

(C) -38 (D) -
$$48\frac{1}{2}$$

Soln:- (i) The given AP is 10, 7, 4......

Solin:- (1) The given AP is 10, 7, 4.......
Here
$$a=10$$
 D= 7-10=-3 n=30
we have $a_n = a + (n-1)d$

So,
$$a_{30} = 10 + (30 - 1)(-3)$$

= $10 - 87$
 $a_{30} = -77$

Hence, the correct choice is
$$(c)-77$$

(ii) The given AP is
$$-3$$
, $-\frac{1}{2}$, 2.....

Here a=-3 n=11

$$d = -\frac{1}{2} - (-3) = -\frac{1}{2} + 3 = \frac{5}{2}$$

we have
$$a_n = a + (n-1)d$$

So,
$$a_{11} = -3 + (11 - 1) \left(\frac{5}{2}\right)$$

= -2 + 25 = 22

Hence, the correct choice is (B) 22

3. In the following APs, find the missing terms in the boxes :

(i)
$$2, \square$$
, 26

(iii)
$$5, \square, \square$$
, $91/2$
(iv) $-4, \square, \square, \square, \square$, 0

$$(v)$$
 38 , 22

Soln:

(i) Let the common difference of the given $A\,P$ be d

Then,

Third term =
$$2+d+d = 2+2d$$

According to the question

$$2 + 2d = 26$$

$$2d = 26 - 2$$

$$2d = 24 \Rightarrow d = 24/2 = 12$$

So, Second term
$$= 2 + d = 2 + 12 = 14$$

Hence, the missing term in the box is 14

(ii) Let the 1st term and common difference of the given AP be a and d respectivelyThen,

2nd term = 13

$$a + d = 13....(1)$$

$$4th term = 3$$

$$a + (4-1)d = 3$$

$$a + 3d = 3....(2)$$

Solving (1) and (2), we get

$$a = 18$$
 $d = -5$

$$\therefore 3rd term = a + (3-1)d$$
$$= a + 2d$$