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Abstract
1.	 In diverse ecosystems, organisms cluster together in such a manner that the 
frequency distribution of cluster sizes is a power law function. Spatially explicit 
computational models of ecosystems suggest that a loss of such power law cluster‐
ing may indicate a loss of ecosystem resilience; the empirical evidence in support 
for this hypothesis has been mixed. On the other hand, a well‐known dynamical 
feature of systems with reduced resilience is the slower recovery from perturba-
tions, a phenomenon known as critical slowing down (CSD). Here, we examine the 
relationship between spatial clustering and CSD to better understand the use of 
cluster size distributions as indicators of ecosystem resilience.

2.	 Local positive feedback is an important driver of spatial clustering, while also af-
fecting the dynamics of the ecosystem: Studies have demonstrated that positive 
feedback promotes abrupt regime shifts. Here, we analyse a spatial model of eco-
system transitions that enables us to disentangle the roles of local positive feed-
back and environmental stress on spatial patterns and ecosystem resilience.

3.	 We demonstrate that, depending on the strength of positive feedback, power law 
clustering can occur at any distance from the critical threshold of ecosystem col-
lapse. In fact, we find that for systems with strong positive feedback, which are 
more likely to exhibit abrupt transitions, there may be no loss of power law clus-
tering prior to critical thresholds.

4.	 Our analyses show that cluster size distributions are unrelated to the phenom-
enon of CSD and that loss of power law clustering is not a generic indicator of 
ecosystem resilience. Further, due to CSD, a power law feature does occur near 
critical thresholds but in a different quantity; specifically, a power law decay of 
spatial covariance of ecosystem state. Our work highlights the importance of links 
between local positive feedback, emergent spatial properties and how they may 
be used to interpret ecosystem resilience.
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1  | INTRODUC TION

Desertification of semi‐arid ecosystems (van de Koppel et al., 2002), 
eutrophication of lakes (Carpenter, Ludwig, & Brock, 1999), spread of 
diseases (Chaves, Hashizume, Satake, & Minakawa, 2012), invasion 
(Hansen, Ives, Vander Zanden, & Carpenter, 2013) and community 
shifts in coral reefs (Knowlton, 2004) are some examples of state 
transitions or regime shifts in ecological systems. Some of these tran-
sitions can be abrupt and irreversible, leading to catastrophic loss of 
wildlife, habitats and ecosystem services. Such transitions are also 
known as critical transitions in the ecology literature. They happen 
when a system crosses a certain threshold, called critical threshold, of 
environmental conditions. Over the last decade, several studies have 
devised and validated methods to detect the vulnerability of ecosys-
tems to transitions (Carpenter et al., 2011; Chen, Jayaprakash, Yu, 
& Guttal, 2018; Dakos et al., 2012; Dakos, Kéfi, Rietkerk, Van Nes, 
& Scheffer, 2011; Eby, Agrawal, Majumder, Dobson, & Guttal, 2017; 
Guttal & Jayaprakash, 2008, 2009; Kéfi et al., 2014; Kéfi, Rietkerk, 
Alados, et al., 2007; Kéfi, Rietkerk, Baalen, & Loreau, 2007; Scheffer 
et al., 2009; Van Belzen et al., 2017; Weerman et al., 2012). One 
such method is based on the idea that patterns of self‐organization 
in ecosystems can offer signatures of resilience (Corrado, Cherubini, 
& Pennetta, 2014; Génin, Majumder, Sankaran, Danet, et al., 2018; 
von Hardenberg, Meron, Shachak, & Zarmi, 2001; Kéfi et al., 2014; 
Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et al., 2007; 
Rietkerk, Dekker, Ruiter, & Koppel, 2004). Self‐organized patterns 
themselves often result from an interplay of facilitative and competi-
tive interactions among organisms (von Hardenberg, Kletter, Yizhaq, 

Nathan, & Meron, 2010; Manor & Shnerb, 2008; Scanlon, Caylor, 
Levin, & Rodriguez‐Iturbe, 2007). Therefore, a comprehensive un-
derstanding of how local interactions between organisms scale to 
their spatial distribution and affect ecosystem resilience is of broad 
ecological interest.

Of the many varieties of self‐organization found in nature 
(D'Odorico, Okin, & Bestelmeyer, 2012; Foti, Jesus, Rinaldo, & 
Rodriguez‐Iturbe, 2013; von Hardenberg et al., 2010, 2001; Kéfi, 
Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et al., 2007; 
Rietkerk & van de Koppel, 2008; Scanlon et al., 2007), we focus 
on spatial patterns where organisms exhibit clustering of irregu-
lar size and shape; these are found in many ecosystems such as 
semi‐arid ecosystems, mussel beds or seagrass (Figure 1). Here, 
the frequency distributions of these cluster sizes may follow a 
power law function (henceforth referred to as power law cluster‐
ing). These are interesting because they may imply that systems 
lack characteristic size (see Box 1 for a summary of properties of 
power laws). Some simulation and empirical studies suggest that 
when ecosystems are stressed, clusters fragment leading to loss of 
large patches (Kéfi et al., 2014; Kéfi, Rietkerk, Alados, et al., 2007; 
Kéfi, Rietkerk, Baalen, et al., 2007). This results in a qualitative 
change in the properties of cluster size distribution: from a power 
law to an exponential distribution. The progressive truncation of 
the tail of the power law clustering has, therefore, been hypoth-
esized to represent loss of resilience in ecosystems (Fernández & 
Fort, 2009; Kéfi et al., 2014, 2011; Kéfi, Rietkerk, Alados, et al., 
2007; Kéfi, Rietkerk, Baalen, et al., 2007; Lin, Han, Zhao, & Chang, 
2010; Weerman et al., 2012).

F I G U R E  1  Power law cluster size distributions in different ecosystems (bottom panel) and representative snapshots which are 
not necessarily from the same study area or time period (top panel). (a) Boiler bay mussel bed, USA (Guichard et al., 2003), © (2003) 
UNIVERSITY OF CHICAGO PRESS (b) Sawgrass in Everglades wetlands, USA (Foti, Jesus, Rinaldo, & Rodriguez‐Iturbe, 2012), © (2012) 
National Academy of Sciences (c) West Broad Ledges seagrass near the Isle of Scilly (Irvine et al., 2016) CC BY‐SA 2.0 and (d) Vegetation in 
Kalahari, Namibia (Scanlon et al., 2007) © (2007) SPRINGER NATURE. Top row image credits: (a) From Michael Trolove [CC BY‐SA 2.0 (https​
://creat​iveco​mmons.org/licen​ses/by-sa/2.0)] (b) https​://doi.org/10.1016/j.ecss.2017.11.001 [CC BY] http://creat​iveco​mmons.org/licen​ses/
by/4.0/, (c) Nat'l ocean service http://www.sanct​uaries.nos.noaa.gov/oms/omsfl​orida/​omsfl​orida​natset.html, sourced from https​://commo​
ns.wikim​edia.org/wiki/File:Flori​dian_seagr​ass_bed.jpg (d) User: Hansm at wikivoyage shared [CC BY‐SA 3.0 (https​://creat​iveco​mmons.org/
licen​ses/by-sa/3.0) Data (1995–2014) (Scanlon et al., 2007)

(a) (b) (c) (d)
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Empirical evidence for this hypothesis, however, is ambiguous 
(Maestre & Escudero, 2009; Meloni, Nakamura, Granzotti, & Martinez, 
2017; Weerman et al., 2012). Additionally, simulation studies in 
more complex models suggest that details of systems matter, thus 
questioning the generality of these cluster‐based indicators (Génin, 
Majumder, Sankaran, Schneider, et al., 2018; Schneider & Kéfi, 2016). 
Nevertheless, the possibility of inferring ecosystem resilience from a 
single snapshot and the increasing availability of low‐cost remotely 
sensed spatial datasets, where these methods can be applied, is at-
tractive. Therefore, an evaluation of the generality and robustness of 
clustering properties as a signature of ecosystem resilience is needed.

To understand issues of generality, we must discuss another class 
of power law behaviours that are considered universal features near/
at critical points of phase transitions. Here, we emphasize that the 
theoretical underpinnings of ecosystem dynamics and indicators of 
stability are based on principles derived from the theory of phase 
transitions and bifurcations (Scheffer et al., 2009; Strogatz, 1994). 
This theory predicts that as a system nears a critical point of phase 
transitions, it takes increasingly longer to recover from perturbations. 
This phenomenon of slowed recovery is called critical slowing down 
(CSD) in the context of continuous phase transitions in the physics lit-
erature. However, a similar effect of slowed recovery appears even in 
ecological models that show abrupt transitions (Scheffer et al., 2009; 
Strogatz, 1994; Wissel, 1984). Consequently, CSD has been widely 
used to devise methods to detect the approach of critical thresh-
olds in ecosystems (Scheffer et al., 2009; Wissel, 1984). An aspect 
of CSD that is much less known in the ecology literature is that close 
to, and at the critical point, the strength of a perturbation decays as 
a power law function of time – indicating a very slow recovery (Ma, 
2000; Sethna, 2006; Stanley, 1999); this is in contrast to systems far 
away from thresholds where perturbations decay exponentially fast. 
In fact, many power law behaviours arise near/at continuous phase 
transitions (Ma, 2000; Sethna, 2006; Stanley, 1999).

Let us highlight an interesting contrast between the two power law 
relationships we have discussed thus far: While the power laws asso-
ciated with CSD are expected to emerge near/at critical points of phase 
transitions (Ma, 2000; Sethna, 2006), the power laws in clustering are 
hypothesized to be lost near/at critical thresholds of ecosystem col-
lapse (Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et al., 
2007). (Please see Glossary and Methods sections for the difference 
in our usage of critical points and critical thresholds.) It is now fairly 
well‐established that many mechanisms cause emergence of power 
laws even away from critical thresholds (Newman, 2005; Pascual & 
Guichard, 2005; Roy, Pascual, & Franc, 2003). However, the theoreti-
cal basis for why a loss of power law clustering can indicate approach 
to a critical threshold in ecosystem models is unclear. Furthermore, 
elucidating relationships (if any) between the dynamical phenomenon 
of CSD and cluster size properties has not gained attention in the lit-
erature. Such an exercise will not only prove helpful in evaluating the 
generality of ecosystem resilience indicators but also reveal the cru-
cial role of local positive feedback in ecosystem patterning.

In this article, we probe the relationship between positive feed-
back, clustering and resilience. To do so, we use a spatially explicit 

model which, unlike previous relatively complex models, decouples 
the effects of positive feedback and environmental stress. We show 
that power law clustering (or loss thereof) is unrelated to resilience. 
We then demonstrate how CSD – a universal feature of dynamical 
systems near thresholds – manifests as a power law decay of spatial 
correlations. Owing to the interdisciplinary nature of the study, we 
introduce important terms and concepts via a Box and a Glossary.

Glossary

1.	 Regime shifts: Changes in qualitative nature of ecosystem 
states. These changes can be abrupt or gradual functions of 
the underlying drivers.

2.	 Critical threshold: The value of an environmental condition (e.g. 
rainfall) and/or state variable (e.g. woody cover) at which a system 
undergoes an abrupt regime shift. In some ecology papers, it is 
used interchangeably with critical point (see below) but here we 
avoid doing so.

3.	 Resilience: The amount of change a system can withstand without 
transitioning to an alternative state.

4.	 Stability: The rate at which a system recovers to its original equi-
librium from small perturbations.

5.	 Critical point: In the physics literature, this term refers to the 
value of driver at which the system undergoes a continuous phase 
transition from one state to the other.

6.	 Critical slowing down: The phenomenon in which systems near 
threshold of transitions are slow to recover from perturbations.

7.	 Positive feedback: Interactions between individuals that result 
in enhanced reproduction and/or reduced death rates of both 
individuals.

8.	 Cluster: A set of individuals who are within a minimum distance 
(typically the nearest neighbour distance) of at least one member 
of the same set.

9.	 Scale‐free: A quantity having infinite average value, thus lacking a 
characteristic scale. Also see Box 1.

10.	Percolation: In the physics literature, percolation is the move-
ment/spread of an agent through the extent of the system via a 
connected path of sites.

11.	Percolation density: The lowest density of occupied sites at which 
percolation occurs. At the same density, we observe a scale‐free 
distribution of cluster sizes in the landscape.

12.	Spatial autocovariance function: Covariance between states at 
two locations as a function of the distance between them.

13.	Power‐spectrum/Spectral density function: Strength of fluctua-
tions as a function of frequency; it is the Fourier transform of the 
autocovariance function.

2  | METHODS AND RESULTS

2.1 | The model

We employ a spatially explicit model of ecosystem dynamics with 
probabilistic update rules for local states (Eby et al., 2017; Majumder, 
Tamma, Ramaswamy, & Guttal, 2019; Sankaran, Majumder, Kéfi, & 
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Guttal, 2018). We consider our landscape to be a discrete two‐di-
mensional space, consisting of N×N grid cells. Each grid cell can be 
either in an occupied state (representing an organism and denoted 
by 1) or in an unoccupied state (denoted by 0). The update rules for 
these local states consist of a baseline probability of reproduction 
described by a parameter p: If a randomly chosen cell is occupied, 
the organism gives birth with a probability p and the offspring colo-
nizes one of the randomly chosen nearest neighbour cells; alterna-
tively, the organism in the chosen cell dies with a probability 1 − p.

The update rules also incorporate local positive feedback, via a 
second parameter q: If near‐neighbours of the chosen cell are oc-
cupied, the probability of local birth is enhanced and that of death 
is reduced. See Appendix A for detailed model description, update 
rules, a simulation protocol and a schematic of the probabilistic up-
date rules. This model was first described in the physics literature 
in Lübeck (2006) and has been recently adopted in the context of 
regime shifts (Eby et al., 2017; Majumder et al., 2019; Sankaran et 
al., 2018).

Although several spatial models in ecology try to explain power 
law clustering, due to their relative complexity, it is often difficult to 
clearly elucidate the role of positive feedback on clustering and resil-
ience (Guichard et al., 2003; Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, 
Rietkerk, Baalen, et al., 2007; Manrubia & Solé, 1997; Scanlon et al., 
2007) The simplicity of our model allows us to independently tune, 
and thus, study the effects of an environmental driver and local pos-
itive feedback on spatial patterns via two parameters p and q respec-
tively. We can think of p, which represents baseline reproduction 
probability of organisms, as being determined by key environmental 
conditions such as resource availability. Consequently, the parame-
ter 1 − p can be interpreted as environmental stress.

Our model captures basic features of ecological transitions, 
consistent with previous studies. A stronger positive feedback in 
ecosystems is known to cause nonlinear and even abrupt responses 
to stress (Kéfi, Eppinga, Ruiter, & Rietkerk, 2010; Kéfi, Holmgren, 
& Scheffer, 2016; Xu, Van Nes, Holmgren, Kéfi, & Scheffer, 2015). 
To see this, we compute density of organisms in the landscape as 
the proportion of occupied cells in steady‐state conditions (see 
Appendix A). In our model, when local positive feedback is weak 
(q = 0), the system undergoes a continuous transition from non‐zero 
densities to a bare state as we increase environmental stress (1 − p) 
(Figure 3a,b). As the strength of local positive feedback (q) increases, 
the system can maintain a high density state even for higher levels of 
stress (similar to previous models; Corrado, Cherubini, & Pennetta, 
2013); but the system also exhibits an abrupt transition to a bare 
state when the stress exceeds the critical threshold. Henceforth, we 
refer to the point of transition (defined by either driver value (p) or 
density (ρ)) as a threshold. When we specifically refer to a continuous 
transition, we call the threshold a critical point whereas the corre-
sponding term for the discontinuous transition is critical threshold 
(also see Glossary).

To reveal the links between positive feedback, clustering and re-
silience, we use this model to investigate the relationship between 
(a) positive feedback and the emergence of power law clustering and 

BOX 1 Power‐law and scale‐free behaviours

Biology is replete with examples of self‐organized spatial cluster-
ing (Guichard, Halpin, Allison, Lubchenco, & Menge, 2003; von 
Hardenberg et al., 2010; Rietkerk & van de Koppel, 2008). In 
some cases, clusters have a wide range of sizes such that the fre-
quency of occurrence of clumps of a particular size (denoted by x) 
decays as a power function of the size, that is, f(x)= cx−� (defined 
for all clusters above a size x>xmin with c and β being constants). 
Below, we describe two interesting properties of this function.

Heavy‐tailedness

The power law frequency distribution has much higher occurrences 
of extreme events than predicted by commonly used distributions 
such as Gaussian or exponential distributions (Figure 2); this fea-
ture of the power law distribution is also called heavy‐tailedness.

Scale‐free power laws

Power laws with an exponent �≤2 mathematically describe fea-
tures that lack a characteristic size/length scale. To see this, we ob-
serve that when �≤2 the mean of this distribution is infinite. Exact 
expressions for the mean (x) and variance (�2

x
) of the (normalized) 

power law probability density function, denoted by p(x), are given by

Thus, there is no characteristic size or typical length scale 
in this distribution, when �≤2, and therefore the distribution 
is called scale‐free. Power law distributions of biological quan-
tities with exponents �≤2 are therefore intriguing. Such distri-
butions, however, are common and have been documented in 
various ecosystems (Figure 1).

x=�
∞

xmin

xp(x)dx=

⎧
⎪
⎨
⎪
⎩

xmin
𝛽−1

𝛽−2
if𝛽 >2

∞ if 1<𝛽≤2

𝜎2
x
=�

∞

xmin

(x−x)2p(x)dx=

⎧
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⎪
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x2
min

𝛽−1

(𝛽−3)(𝛽−2)2
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∞ if 1<𝛽≤3

F I G U R E  2  The plot on the left shows that the power law 
function has a heavier tail, that is, higher frequency (f(x)) of 
occurrence of large events, than in an exponential function. The 
plot on the right shows that power law function is a straight line 
on log‐log axes; the heavier tail of power law is evident here too
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(b) the power law clustering and thresholds of regime shifts. Finally, 
we demonstrate the implication of CSD on spatial correlations. 
Going forward, we present our findings to each of these investiga-
tions as separate subsections. Given that each investigation required 
us to draw methods from seemingly disparate concepts, we provide 
a brief explanation of the theory, methods and then present each 
finding.

2.2 | Positive feedback lowers the 
percolation density

To investigate the effect of positive feedback on power law clustering 
in ecosystems, we must first understand clustering in ‘null models’, 
that is, spatial models that are devoid of any interactions among or-
ganisms. The simplest way to implement such a null model is to merely 
distribute individuals on a two‐dimensional discrete lattice at random, 
with the number of individuals determined by the desired densities 
on the landscape. Spatial null models correspond to classic models 
in the physics literature in the context of a phenomenon called per-
colation (Stauffer, 1979). This phenomenon refers to the emergence 
of a ‘spanning cluster’ – a single cluster that spans the extent of the 
system; other non‐connected, smaller clusters may continue to exist 
on the landscape. The lowest density at which such a spanning cluster 
can occur is called the percolation density (denoted by �p); the value of 
�p depends on the model and the geometry of the landscape.

In null models with a square lattice – a geometry relevant to 
many ecological contexts – the percolation density (denoted by �p) is 
0.59. We ask the question – how does percolation density depend on 
the strength of local positive feedback (q) in our model? To address 
this question, we use the concept of percolation probability which is 
defined as the probability of occurrence of a spanning cluster in the 
landscape (see Appendix A for details of simulations). In Figure 4, 
we display the percolation probability as a function of density of 

occupied cells on the landscape (ρ) for three different values of 
positive feedback (q) and the spatial null model. From this graph, we 
identify percolation density (�p) as the lowest density at which this 
probability is non‐zero.

We find that our model also exhibits a transition in percolation 
probability as a function of density (Figure 4). Based on the trends in 
the null model, together with the three values of positive feedback, 
we conclude that the percolation density (�p) decreases with increas-
ing local positive feedback (q). Based on the results of percolation 
(spatial null) models (Stauffer, 1979), we expect to see scale‐free 
spatial clustering emerging at the percolation density in our spatial 
model as well. This quantification of percolation density is thus help-
ful for the next analysis concerning relationship between clustering 
and ecosystem resilience.

F I G U R E  3  Positive feedback increases the nonlinearity and causes an abrupt collapse in response to stress. (a) Steady‐state density 
(shown as heatmap) as a function of driver value (p) and positive feedback (q). Pink‐dashed lines in (a) represent two values of q which are 
magnified and shown in (b): q=0 (continuous transition) and q=0.92 (abrupt transition). The red crosses in both panels represent critical 
point/threshold for these two values of q. Lattice size 1,024 × 1,024

(b)(a)

F I G U R E  4  Percolation probability changes from zero to non‐
zero at an approximate density of 0.59 for the spatial null model, 
at 0.53 for the spatial model with low positive feedback (q=0), at 
0.45 for higher positive feedback (q=0.8), and at 0.31 with very 
high positive feedback (q=0.92). Cyan‐coloured crosses represent 
the approximate location of the percolation densities. For each 
of these cases, these transitions in percolation probability occur 
exactly at the density where power law cluster size distributions are 
observed; see Figure 5a and b. Lattice size 256 × 256
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2.3 | Cluster size distributions are not generic 
indicators of ecosystem resilience

Let us now consider how positive feedback affects both spatial clus-
ters and resilience. As we showed in the above result, positive feed-
back promotes abrupt transitions and increases the threshold value 
of density at which the regime shift happens (Figure 3). Additionally, 
positive feedback can lower the percolation density (Figure 4). We 
find that power law clustering occurs at the percolation threshold ir-
respective of the density at which the threshold occurs (Figure 5a,b). 
It follows from this that, power law clustering can, therefore, occur 
at any distance from the threshold of regime shift.

In Figure 6, we display how positive feedback (q) affects the 
link between patterns, dynamics and resilience in a qualitative way. 
Based on this, we make predictions for two scenarios: we predict 
that in systems with weak positive feedback (q is low/zero), the dis-
tance between percolation density (�p) and threshold of regime shift 
(�c) will be relatively large. Thus, an approach to threshold follows 
the previously expected pattern of loss of power law clustering (Kéfi 
et al., 2014) (Figure 5b and inset). In contrast, for systems with strong 
positive feedback (q is high), which are most likely to exhibit abrupt 
transitions, the distance between percolation density and the critical 
threshold of collapse will be negligible or even zero (Figure 5b and 
inset). Hence, power law clustering may occur at the critical thresh-
old itself and the loss of power law clustering cannot be used as a 
resilience indicator.

Our model confirms our expectations, that the distance be-
tween the density and threshold of transition and percolation 
density/threshold reduces as a function of positive feedback 
and becomes even zero for large values of positive feedback 
(Figure 6b). Consequently, the qualitative features of cluster‐size 
distribution (e.g. being a power law, truncated power law or expo-
nential) do not follow a general trend as a function of ecosystem 

stress (see Appendix C). In Figure 5b and inset, we show a case 
where a strong positive feedback scenario shows a power law 
clustering occurring very near, even possibly at, the critical thresh-
old of collapse.

Put together, our model analyses suggest that the relationship 
between cluster sizes and ecosystem resilience heavily depends on 
the strength of positive feedback in the ecosystem. This questions 
the generality of cluster size distributions as indicators of ecosys-
tem resilience. Notably, systems most prone to abrupt transitions 
(i.e. systems with strong positive feedback) are also systems where 
properties of cluster size distributions are least likely to be useful as 
indicators. Furthermore, since cluster size distributions do not pri-
marily depend on proximity to critical threshold in these stochastic 
and spatial ecological models, we conclude that it is also unrelated to 
critical slowing down (CSD); we recall that CSD is a generic dynam-
ical feature of systems near critical thresholds. See next section on 
how CSD influences spatial properties and causes power law fea-
tures in them.

2.4 | Scale‐free spatial correlations arise at critical 
thresholds of ecosystem collapse

The theory of phase transitions posits the emergence of scale‐free 
features near/at critical points. Here, we illustrate how critical slow-
ing down – a canonical feature of dynamical systems near thresholds 
– causes scale‐free behaviour in the spatial autocovariance function 
(Figure 7; Appendix E).

As an ecosystem approaches a critical threshold, its return to 
equilibrium state, when perturbed, becomes increasingly slow. This 
phenomenon of critical slowing down (Ma, 2000; Scheffer et al., 
2009; Wissel, 1984) has two implications – increased spatial cor-
relations (Dakos, Nes, Donangelo, Fort, & Scheffer, 2010) and in-
creased spatial variance (Guttal & Jayaprakash, 2009). The spatial 

F I G U R E  5  Strength of positive feedback, rather than distance to thresholds, determines the density at which power law (scale‐free) 
clustering occurs. The values of driver and density at which we find a power law distribution (percolation point) are shown as cyan‐coloured 
crosses in the phase diagrams (a) and (b), with their insets showing the corresponding inverse cumulative distribution function (CDF) of the 
patch sizes. (a) When positive feedback is weak (q=0), power law clustering occurs far from ecosystem transition, consistent with previous 
hypotheses. (b) When positive feedback is strong (q=0.92), power law clustering can occur close to (or even at) the critical threshold of 
collapse. For the fitted function kx−� wherein k= (�−1)x

�−1
min , xmin=17 in (a) and 3 in (b); lattice size = 1,024 × 1,024. See Appendix C for cluster 

size distributions at other values of p and q

(a) (b)
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autocovariance function, defined as covariance of local densities 
at two locations separated by a distance r (Appendix E), captures 
both spatial variance and correlations. Calculation of the spatial au-
tocovariance function, however, is often beset with statistical and 
computational difficulties. Therefore, we focus on a mathematically 
equivalent measure – power‐spectrum (Kéfi et al., 2014). It can be 
shown that the power‐spectrum is the Fourier transform of the au-
tocovariance function (Reif, 2009). The power‐spectrum of a spatial 
pattern provides a measure of the relative contribution of fluctua-
tions at different spatial frequencies in the system, to its overall pat-
tern. It is known in the ecology literature that as systems approach 
critical thresholds, the low frequency modes begin to dominate 
their power‐spectrum (Carpenter & Brock, 2010; Kéfi et al., 2014). 
However, the full functional form of the power‐spectrum is rarely 
quantified (but see Barbier, Couteron, Lejoly, Deblauwe, and Lejeune 
(2006), Bonachela et al. (2015), Couteron (2002) in the context of 
periodic and multi‐scale patterns of dryland vegetation).

Simulations of our model show that the power‐spectrum in-
deed becomes scale‐free at critical thresholds for systems with 
both weak and strong positive feedback (Figure 7; see Appendix 
F for details of statistical fitting). It is well known that a scale‐
free power‐spectrum is indicative of a scale‐free autocovariance 
function (Reif, 2009; also see Appendix E). In other words, we 
may conclude that the autocovariance function is also scale‐free 
near/at critical thresholds of ecosystem collapse in our model. 
Note that, unlike the cluster‐size distribution which shows posi-
tive feedback and density‐dependent trends (Figure S2 and S3 in 
Appendix C), the power‐spectrum is consistently scale‐free at the 
critical threshold.

3  | DISCUSSION

In this study, we investigated the generality of the hypothesis that 
loss of power law clustering in ecosystems is indicative of reduced 
resilience. We revealed that cluster size distributions are in fact un-
related to ecosystem resilience. Furthermore, when ecosystems are 
in the vicinity of critical thresholds of collapse, critical slowing down 
causes a power law (scale‐free) behaviour in a different metric – the 
spatial autocovariance, or spectral function, of local densities.

3.1 | Local positive feedback and clustering

Previous ecological models that have attempted to resolve these 
connections include complex interactions often specific to particu-
lar ecosystems (Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, 
Baalen, et al., 2007; Kéfi et al., 2011; Meloni et al., 2017; Scanlon et 
al., 2007; Schneider & Kéfi, 2016). In such models, many parameters 
contribute to local positive feedback and environmental stress, thus 
making it difficult to disentangle causal links between local processes 
and macroscopic patterns. Here, we deliberately used a simple model 
which enabled us to unravel the effects of environmental stress and 
local positive feedback on clustering and resilience. It is worth high-
lighting another contrast with seminal ecological models that try to 
explain power law clustering observed in ecosystems (Kéfi, Rietkerk, 
Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et al., 2007; Scanlon et al., 
2007); they assume that local births/deaths of trees, in addition to 
being positively influenced by local density, are negatively regulated 
by global‐scale feedback. Mechanisms such as rapid spread of water 
in the landscape (von Hardenberg et al., 2010) or a uniform global 
density‐dependent grazing pressure (Kéfi, Rietkerk, Alados, et al., 
2007; Kéfi, Rietkerk, Baalen, et al., 2007) are offered as potential ex-
planations for negative regulation of local growth due to global‐scale 
vegetation density. Based on our results in Figure 5, consistent with 
Manor and Shnerb (2008, 2009), we argue that there is no need to 
invoke global‐scale feedback; in fact, local positive feedback alone 
can explain the emergence of scale‐free clustering in these systems.

Several empirical studies find neither scale‐free clustering 
(Weerman et al., 2012; Xu, Holmgren, et al., 2015) nor the expected 
shifts of cluster size distributions with increasing stress (Casey, 

F I G U R E  6   (a) Conceptual diagram of our hypothesis. This 
cartoon illustrates the qualitative features of the effect of positive 
feedback on thresholds (red crosses) and percolation points (cyan 
crosses). (b) shows that indeed in our model, as hypothesized 
conceptually, the difference between the density at which patches 
follow a power law distribution (�p) and the density at the critical 
point/threshold (�c) reduces as positive feedback (q) increases. 
For this result, lattice size of 256 × 256 was chosen to reduce 
computational time. See Appendix D for how difference between 
driver value at critical and percolation points/thresholds changes as 
a function of q

(a)

(b)
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Cohen, Acharya, Kaplan, & Jawitz, 2016). However, they attribute 
this to an absence/disruption of global negative feedback in their 
systems (Casey et al., 2016; von Hardenberg et al., 2010; Weerman 
et al., 2012) (but also see Moreno‐de las Heras, Saco, Willgoose, 
& Tongway, 2011). As we argued in the previous paragraph, nega-
tive feedback is not a necessary condition for scale‐free clustering. 
Further, based on our results that cluster sizes do not relate to resil-
ience, we posit that these empirical results are not surprising.

3.2 | Cluster size distributions in other contexts

Many different processes can result in the emergence of power law 
cluster size distributions (Mitzenmacher, 2004; Newman, 2005). 
Consequently, the interpretation of the loss of power law clustering 
could differ across systems. Broadly, for correct interpretations of 
power law clustering (or loss of power laws), it is important to un-
derstand how local interactions and processes scale to macroscopic 
clustering properties. Previous studies have shown that power law 
cluster size distributions arise when clusters grow in proportion to 
their size, also called proportionate growth (Manor & Shnerb, 2009). 
Our simple model and as well as those presented in several stud-
ies, (for e.g. Corrado et al., 2014; Guichard et al., 2003; Kéfi et al., 
2014; Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et 
al., 2007; Scanlon et al., 2007), are likely to be consistent with the 
generic feature of proportionate growth in clusters. We expect that 
our conclusions on the lack of relationship between cluster size dis-
tributions and resilience will be applicable to these spatially explicit 
models.

There could, however, be system‐specific cases where trends in 
cluster size distributions may function as an indicator of ecosystem 
health. For example, in ecosystems with relatively weak local pos-
itive feedback, the distance between percolation point and critical 
thresholds could be large (see Figure 6); here, cluster size distribu-
tions, which qualitatively change from a power law to an exponential 

distribution as a function of reducing density and therefore, will 
show a loss of power law clustering as the system approaches the 
critical threshold. However, even in spatial null models with no local 
interactions and no thresholds of regime shifts, cluster size distribu-
tions show the same behaviour, that is, a loss of power law clustering 
as a function of reducing density (Kéfi et al., 2014, 2011). Hence, one 
must exercise caution in drawing causal relationships between clus-
ter size distributions and resilience. Even in such specific instances 
where cluster size distributions may offer indicators of ecosystem 
health, monitoring of critical slowing down‐related measures such 
as spatial variance and correlations (also see next section) is likely 
to be helpful by providing an additional assessment of ecosystem 
resilience.

We, however, reiterate that many processes can lead to power law 
relationships. A detailed exposition of the emergence of various power 
law relationships and the local processes underlying the dynamics of 
these systems are beyond the scope of this manuscript. We refer the 
reader to Newman (2005) for a review on the topic.

3.3 | Cluster sizes and critical slowing down

How do scale‐free correlations in density and scale‐free clustering 
relate to each other? They both indicate the emergence of large spa-
tial scales in the system. In our model, however, they capture fun-
damentally different properties. Scale‐free correlations in density 
indicate that perturbations spread to large distances in ecosystems 
as a consequence of critical slowing down. Therefore, it captures the 
dynamics of perturbations and hence can be used to infer stability 
or lack thereof. In contrast, scale‐free clusters indicate the presence 
of large clusters. In our model, we showed that the dynamics of how 
perturbations decay do not relate to distribution of cluster sizes. 
Based on this, we hypothesize this to be true for associated models 
such as dryland vegetation and mussel bed models. (Guichard et al., 
2003; Kéfi, Rietkerk, Alados, et al., 2007; Kéfi, Rietkerk, Baalen, et 

F I G U R E  7  The power‐spectrum of systems very near (or at) the threshold of transitions decays as a power law function of spatial 
frequency, (a) for q=0 and (b) for q=0.92. Lines represent the mean trend and bands, the SD. Insets show the location of parameter values 
for which power‐spectrum is plotted. Blue is far from transition (0.73 for q=0 and 0.2862 for q=0.92), red is close/at the threshold (0.6225 
for q=0 and 0.2852 for q=0.92) and grey represents the spatial null model. For the fitted function kx−� (dashed dark red line), k=2.02×10−7 
when q=0 and 4.65×10−8 when q=0.92. We used a =1,024 × 1,024 lattice. See Appendix F for details on statistical fitting

(a) (b)
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al., 2007; Scanlon et al., 2007; Scheffer, Rinaldi, Gragnani, Mur, & 
Nes, 1997). Future studies may explore the validity of this hypoth-
esis in other ecosystem models and how system‐specific processes 
may affect these results.

How efficient is it to use scale‐free features of density correla-
tions as an early warning signals (EWS) of regime shifts or critical 
transitions (Scheffer et al., 2009)? The purpose of early warning sig-
nals is to detect signatures of approach to critical thresholds. In that 
sense, computing simpler metrics of spatial autocorrelation between 
neighbouring sites (Dakos et al., 2010) or spatial variance (Guttal & 
Jayaprakash, 2009) may have advantages such as ease of computa-
tion and better statistical reliability in comparison to characterizing 
the complete form of autocovariance or spectral functions. On the 
other hand, simpler metrics are also easily affected by external fac-
tors, such as increased spatial heterogeneity or external variability 
(Dakos et al., 2010; Kéfi et al., 2014) and hence confound interpre-
tations. Further investigations can reveal the relative efficacy of dif-
ferent spatial metrics.

Long‐range and even scale‐free spatial correlations have indeed 
been documented in some ecological contexts. For example, orien-
tations of birds in starling murmurations show scale‐free correla-
tions (Cavagna et al., 2010). In population ecology, patterns of tree 
yield may show a long‐range spatial synchrony (Noble, Rosenstock, 
Brown, Machta, & Hastings, 2018). In these cases too, spatial auto-
correlation essentially measures the spread of perturbations from 
one individual to nearby individuals and the resultant long‐range 
patterns. With the increase in the availability of large‐scale spatial 
datasets in ecology, especially remotely sensed images, we expect 
that measures of spatial clustering and correlations can be obtained 
with statistical rigour, potentially offering insights on local ecological 
interactions and ecosystem resilience.

3.4 | Concluding remarks

Our study helps us disentangle processes that generate power law 
cluster sizes, scale‐free correlations and how they relate to ecosys-
tems' critical thresholds. With the increasing availability of high‐res-
olution spatial datasets, from satellites to drone‐based imagery, of 
various ecosystems, spatial analyses are likely to be widely deployed 
in the future. Such data will enable us to quantify not only patterns, 
as described above, but also dynamics of clusters and correlations 
(Manor & Shnerb, 2009; Van Belzen et al., 2017; Weissmann, Kent, 
Michael, & Shnerb, 2017; Weissmann & Shnerb, 2016). Our study 
reveals that naive association of observed scale‐free behaviours 
with either criticality or stability can be misleading. Furthermore, 
we highlight the importance of having a clear understanding of how 
local interactions drive macroscopic behaviours to infer resilience of 
ecosystems.
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