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Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to
limited research, resulting in a lack of reliable population estimates and standardised
survey methods for the eight extant species. Camera trapping represents a unique op-
portunity for broad-scale collaborative species monitoring due to its largely non-
discriminatory nature, which creates considerable volumes of data on a relatively wide
range of species. This has the potential to shed light on the ecology of rare, cryptic and
understudied taxa, with implications for conservation decision-making. We undertook a
global analysis of available pangolin data from camera trapping studies across their range
in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts
as a method for monitoring pangolin populations, and (2) to gain insights into the dis-
tribution and ecology of pangolins. We analysed data collated from 103 camera trap sur-
veys undertaken across 22 countries that fell within the range of seven of the eight
pangolin species, which yielded more than half a million trap nights and 888 pangolin
encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica,
white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection
probabilities varied with forest cover and levels of human influence for P. tricuspis, but
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were low (<0.05) for all species. Occupancy was associated with distance from rivers for M.
javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis
and protected area status forM. javanica and P. tricuspis. We conclude that camera traps are
suitable for the detection of pangolins and large-scale assessment of their distributions.
However, the trapping effort required to monitor populations at any given study site using
existing methods appears prohibitively high. This may change in the future should
anticipated technological and methodological advances in camera trapping facilitate
greater sampling efforts and/or higher probabilities of detection. In particular, targeted
camera placement for pangolins is likely to make pangolin monitoring more feasible with
moderate sampling efforts.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pangolins are considered to be theworld's most traffickedwildmammals (Challender andWaterman, 2017; Heinrich et al.,
2017). With contemporary illegal trade largely involving whole pangolins and their scales (Nijman, 2015), pangolins are
threatened by overexploitation for both international and local use. Pangolin products are trafficked within Asia and,
increasingly, from West and Central Africa to East and Southeast Asia, mainly China and Vietnam (Heinrich et al., 2017). All
eight species are listed as threatened on The IUCN Red List of Threatened Species™ (hereafter ‘Red List’; IUCN, 2018) and in
2016 were included in CITES Appendix I, establishing an international ban on commercial trade inwild-caught pangolins and
their derivatives. Nonetheless, pangolin poaching and trafficking continues seemingly unabated (Heinrich et al., 2017).

Despite high levels of exploitation, pangolins have received little research attention and, until the last decade, scant
conservation investment. Consequently, their biology and ecology remain poorly understood, with even basic ecological
knowledge lacking for multiple species (Willcox et al., 2019). Of the eight recognised pangolin species, the black-bellied
pangolin Phataginus tetradactyla, white-bellied pangolin Phataginus tricuspis, giant pangolin Smutsia gigantea, and Tem-
minck's ground pangolin Smutsia temminckii are distributed across sub-Saharan Africa. The Indian pangolin Manis crassi-
caudata, Philippine pangolin Manis culionensis, Sunda pangolin Manis javanica, and Chinese pangolin Manis pentadactyla are
found across large parts of South, East and Southeast Asia. Pangolins are solitary, predominantly nocturnal (with the
exception of P. tetradactyla) and myrmecophagous (Kingdon and Hoffman, 2013). They are known from a variety of habitats
including primary and secondary tropical forests, moist and dry lowland and montane forests, shrublands, grasslands, and
swamplands, ranging up to a maximum elevation of around 3000m asl (Baillie et al., 2014; Challender et al., 2014a, 2014b;
Lagrada et al., 2014; Pietersen et al., 2014; Waterman et al., 2014a,b,c). While the Chinese, Indian, giant and Temminck's
pangolins are ground-dwelling, the Philippine, Sunda and white-bellied pangolins are semi-arboreal, and the black-bellied
pangolin almost exclusively arboreal. The ground-dwelling species use different types of burrows for feeding and resting,
to which they show low fidelity (e.g. Karawita et al., 2018; Lin, 2011). Indian, Chinese and giant pangolins are thought to
remain in close proximity towater sources (e.g. Karawita et al., 2018;Wu et al., 2004), while Temminck's ground pangolins are
considered to be largely water-independent (Stuart, 1980). Beyond this, little is understood about the natural history of
pangolins, including home range size, habitat use, activity patterns and reproductive behaviours.

Population estimates for any pangolin species at the national or international level are almost non-existent, with few
exceptions (e.g. S. temminckii in South Africa; Pietersen et al., 2016). Monitoring of pangolin populations is constrained by the
absence of standardised survey methods (Challender et al. in prep). A range of approaches have been applied with mixed
success, including burrow counts, camera trapping, detection dog teams, social research, and telemetry (see Willcox et al.,
2019). Camera trapping is one of the few methods that has been attempted for most pangolin species, although its use has
varied widely in terms of sampling strategy and intensity. Willcox et al. (2019) report that large-scale survey efforts using
camera traps as part of general biodiversity monitoring activities, in which cameras are frequently located along trails,
typically result in very low detection rates for pangolins. In many places in Southeast Asia, this is thought to be because
populations have declined severely and occur at very low densities, but camera placement strategies may also be suboptimal
for pangolins (Willcox et al., 2019). Cameras targeted at potential pangolin field signs, such as ant nests or burrows, have had
more success in confirming presence (e.g. Bruce et al., 2018; ZSL, 2016), as have cameras placed in strictly random locations
(Wearn et al., 2017). However, camera placement strategies may be less critical where populations of ground-dwelling
pangolins are still relatively abundant because, hypothetically, detection rates should be higher (Challender et al. in prep;
Willcox et al., 2019).

Collaborative biodiversity monitoring across multiple studies and locations offers the potential for broad-scale ecological
assessments with extensive geographic coverage (Rich et al., 2017; Steenweg et al., 2017). Remote camera trapping methods
offer an ideal opportunity for collaborative research, as they are effective at sampling a wide variety of terrestrial mammals
and birds (>100 g body size) and are non-exclusive to any particular species of interest (Wearn and Glover-Kapfer, 2017). They
thereby create large volumes of potentially informative data on a wide range of species (Wearn and Glover-Kapfer, 2019;
Steenweg et al., 2017). These data are increasingly being used to assess understudied species of conservation concern (e.g.
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Fischer et al., 2017; Linkie et al., 2013; Schank et al., 2017; Scotson et al., 2017a). Although lack of standardisation across
studies can preclude the incorporation of fine-scale covariates (e.g. site-specific vegetation or climatic variables), cross-site
analysis of camera trap data using global covariate datasets (such as those based on remote sensing) can assist with
answering basic questions regarding the distribution and ecology of threatened species. Pangolins are potentially well suited
to camera trap monitoring, because they are relatively large (>1 kg), endothermic (and therefore suitable for the passive
infrared sensors most commonly used on camera traps), and most species are at least partially terrestrial. A collaborative
range-wide assessment that brings together small numbers of records from a multitude of studies has the potential to
contribute significantly to our understanding of pangolin populations and monitoring methods. This knowledge is urgently
needed in order to inform targeted conservation interventions, including identifying potential strongholds, influencing na-
tional and international policy, and evaluating the impact of both exploitation and conservation interventions (Challender
et al., 2014c; CITES, 2017). These needs have been recognised as priorities by the IUCN SSC Pangolin Specialist Group
(Challender et al., 2014c), pangolin range states (Anon, 2015) and the Parties to CITES (CITES, 2017).

In this study, we combined camera trap efforts on an unprecedented scale, aiming to (1) assess the utility of existing
camera trapping efforts as a method for monitoring pangolin populations, and (2) improve understanding of pangolin dis-
tribution and ecology. This is the first attempt at modelling the probability of occurrence (hereafter, occupancy; MacKenzie
et al., 2002) of pangolins throughout their known range, enabling us to offer insights into the broad factors determining
pangolin distribution patterns and the challenges of monitoring pangolins using camera trap methods.

2. Materials and methods

2.1. Data collection and preparation

We performed extensive literature reviews of camera trap research conducted in regions within the predicted range of all
pangolin species published between 2010 and 2016 using ISI Web of Science in December 2015 (Asia) and September 2016
(Africa). We included all articles regardless of target species using the generic search terms (“camera trap*” AND “Asia”) and
(“camera trap*” AND “Africa”). We used these data to create a database of correspondence authors fromwhomwe requested
data. In addition, we reviewed the activities of major regional and international NGOs and obtained data from publicly
advertised camera trapping projects within relevant regions, as well as using freely available camera trap data provided by the
Tropical Ecology Assessment and Monitoring (TEAM) Network. We obtained further datasets where correspondence with
authors and NGO representatives connected us with colleagues working on relevant projects. The data we requested
comprised latitudes and longitudes of camera trap stations, capture histories for cameras that recorded pangolins, and
summary data for all other cameras. We accepted reported pangolin species identifications without further verification.

We overlaid individual camera trap locations with each species distribution (as defined by the Red List) and created
detection histories for each species using all cameras located within their respective ranges (Baillie et al., 2014; Challender
et al., 2014a, 2014b; Lagrada et al., 2014; Pietersen et al., 2014; Waterman et al., 2014a, 2014b, 2014c). In the detection ma-
trix, a value of 1 indicated that the species was detected on a given day at a given camera trap station, while 0 represented the
absence of detection. In the absence of empirical data, we defined the maximum length of a sampling session (in which we
assume that camera trap locations were closed to changes in occupancy) as six months based on recommendations in Wearn
and Glover-Kapfer (2017) for medium to large mammals. Where sampling in a given study took place over more than 6
months, we split sampling into multiple sessions. We then stacked data from different studies and sessions to create a single
detection historymatrix (inwhich each row is therefore a given camera trap station in a given session). We note that, because
sampling in different studies was not concurrent, our occupancy estimates do not apply to a specific time period, but to the
occupancy state as it existed across the different study areas when they were sampled. In addition, by stacking data from
different sessions within a study, we have introduced some dependence across rows of the detection matrix where camera
trap stations were repeat-surveyed. However, we felt the benefits of providing models with more data were larger than the
cost of potentially under-estimating sampling variances. Due to a low number of records, we collapsed five-day sampling
periods into single trap occasions in order to increase per-occasion detection probability. We used ArcGIS Desktop Version
10.0 (ESRI, Redlands, CA) and QGIS Version 2.18 (QGIS Development Team, 2017) to ensure independence of camera trap
samples by establishing a minimum distance of 25m between cameras (Kays et al., 2009), using random selection to
eliminate stations where necessary. Given that the spacing between some of our camera trap stations was likely less than the
home-range diameter of pangolins, we interpret occupancy estimates as the probability of a location being used over the
period of sampling, rather than the probability it was occupied (Latif et al., 2016).

Due to lack of standardisation across studies included in our dataset, we extracted station-level covariates for each camera
trap using GIS software and freely available global datasets. These consisted of distance to the nearest river (based on
HydroSHEDS; Lehner et al., 2008); a binary indicator of protection status, where protected areas were defined as land falling
under any of the IUCN protected area categories (World Database on Protected Areas; UNEP-WCMC & IUCN, 2015); elevation
(Viewfinder Panoramas; de Ferranti, 2012); percentage forest cover for 2015, which was the year most represented in our
dataset (extracted from Hansen et al., 2013); and an index of human influence inferred from datasets on human population
density, land use and infrastructure (built-up areas, night-time lights and land cover), and potential for human access
(coastlines, roads, railroads and navigable rivers) (Global Human Influence Index v2; WCS and CIESIN, 2005). We expected
that these global datasets would capture aspects of pangolin ecology based on current knowledge, as well as the threats they
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face from hunting and human-induced habitat changes. All continuous covariates were scaled using the mean and standard
deviation in R. All variance inflation factors were <3 (Zuur et al., 2010).

2.2. Occupancy models

For species with sufficient captures, we analysed the detection data with single-season occupancy models (MacKenzie
et al., 2002) using the R package unmarked (Fiske and Chandler, 2011). We used occupancy models to analyse two key pa-
rameters: occupancy (j) and detectability (p), initially creating a null model that assumed both parameters were constant
across all camera trap stations. Given the low number of pangolin records obtained, we were unable to fit a maximal model
containing all detection and occupancy covariates simultaneously. We therefore built a set of candidate models for each
species in a two-staged process that first identified significant detection covariates, and then carried these forward to assess
the influence of occupancy covariates. We considered a subset of covariates to have a potential influence on detection
probability, namely protected area status, human influence and forest cover. We hypothesised that protected area status and
human influence might be a determinant of hunting pressure, which in turn may affect the movement patterns of pangolins
and therefore detectability. We hypothesised that forest cover might be associated with variation in understorey vegetation
density, which in turn may affect the size of the detection zone of camera traps. We incorporated all previously described
station-level covariates as potential influencers of occupancy.

In the first stage of modelling, we followed an information theoretic approach to determine the importance of detection
covariates (Burnham and Anderson, 2002) using the Akaike Information Criterion corrected for small sample size (AICc). We
carried only those parameters contained in models with DAICc �6 forward into the second stage (Harrison et al., 2018). Our
model selection process therefore consisted of: (1) detection models, in which occupancy was held constant and detection
probability was assumed to be either constant or a function of the covariates protected area status, human influence and/or
forest cover; and (2) variable detection and occupancy models, in which both occupancy and detection probability were
assumed to be either constant or a function of study covariates. We compared models containing all possible covariate
combinations and conducted model averaging across all models with DAICc �6 compared with the top-ranking model using
the R package AICcmodavg (Mazerolle, 2017). We inferred the relative importance of variables based on their standardised
effect sizes and considered effects to be significant when their model-averaged confidence intervals did not cross zero.

Given the paucity of pangolin detections, we also attempted to fit similar occupancy models in a Bayesian framework,
using Just Another Gibbs Sampler (v4.3.0; Plummer, 2012).We provide details of this modelling (including prior specification)
in Appendix S3.We hypothesised that a Bayesian approachmight perform better with the small sample sizes, and be robust to
boundary effects caused by low detection probabilities (Welsh et al., 2013). The results we obtained were qualitatively similar
to those from unmarked, and we were still only able to fit occupancy models with covariates for the Sunda pangolin, white-
bellied pangolin and giant pangolin. We therefore present these results in the Supplementary Material (Appendix S3).

3. Results

3.1. Data overview

We obtained camera trap data from 103 studies distributed across fourteen African countries and eight Asian countries
(Fig. 1), totalling 508,312 trap nights. This effort yielded 888 pangolin detections (Table 1). Studies were primarily targeting
specific medium to large terrestrial mammals (e.g. sun bear Helarctos malayanus, leopard cat Prionailurus bengalensis) or
taxonomic groups (e.g. felids, carnivores), or otherwise were assessing the whole community of terrestrial mammals and
birds. Camera traps were sited on amixture of wildlife trails, man-made trails, active roads, abandoned roads and random off-
trail locations.

3.2. Occupancy models

Detections ofM. crassicaudata,M. culionensis,M. pentadactyla, P. tetradactyla and S. temminckiiwere too few to implement
occupancy models. The models suffered from boundary estimates or otherwise failed to produce sensible estimates (e.g. very
large standard errors for one or more parameters). We obtained very low detection estimates from null models for the
remaining species (M. javanica: 0.025± 0.004 SE; P. tricuspis: 0.026± 0.003; S. gigantea: 0.039± 0.003). Through our two-
staged model selection process, we obtained 51 candidate models for M. javanica, 14 for P. tricuspis and 52 for S. gigantea.
Following model averaging, our results indicated significant influences of forest cover and human influence on detection
probability, and of elevation, distance from rivers, protected area status and human influence on occupancy (Fig. 2).

Probability of occupancy for both S. gigantea and P. tricuspis declined with increasing elevation across a range from 0 to
2395m asl (Fig. 3A and B). S. gigantea occupancy also declined with increasing distance from the nearest river, while that ofM.
javanica increased (Fig. 3C and D). The maximum distance from rivers varied for camera traps within each species range, with
no cameras beyond 6 km for S. gigantea (mean 1.9 km), compared with a maximum of 14 km for M. javanica (mean 2.3 km).
Both P. tricuspis and M. javanica were more likely to use locations outside of protected areas than within them (Fig. 4),
although only 12% of camera trap locations for P. tricuspis were located outside of protected areas, compared with an even
distribution forM. javanica. Detectability of P. tricuspiswas positively associated with levels of human influence up to a score



Fig. 1. Map of camera trap survey locations across the range of African and Asian pangolin species. Points represent the mean camera trap location for each
survey.
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of 26 (Fig. 5A), where the maximum possible index of human influence is 64 (WCS and CIESIN, 2005). In addition, both
detection and occupancy of P. tricuspis were significantly influenced by forest cover, but in opposing directions (Figs. 3E and
5B). This result should, however, be treated cautiously, as therewere very few records of P. tricuspis in areas of low forest cover
(only 3% of camera traps were situated in locations with <50% forest cover). None of the tested detection covariates were
found to be significant for M. javanica and S. gigantea.
4. Discussion

As solitary, predominantly nocturnal species, pangolins have historically proven difficult to detect. Despite a global
approach and unprecedented number of trap nights collated in our study, we recorded a very low number of detections for all
species. Nevertheless, we obtained meaningful results regarding the distribution and ecology of the Asian speciesM. javanica
and African species P. tricuspis and S. gigantea, but gained limited insights into the threats that pangolins face, likely due to the
coarse nature of the data supporting our tested variables. Our findings help inform future camera trapping efforts for
detecting and monitoring pangolins in a given study area, and have broader implications regarding the feasibility of using
camera traps for robust monitoring of pangolins across their ranges (Table 2).
4.1. Coarse-scale drivers of pangolin occupancy

Our model results align with current understanding of S. gigantea ecology, indicating decreasing occupancy with
increasing elevation and distance from rivers, as this species is believed to occur primarily in lowland tropical moist and
swamp forest (Waterman et al., 2014a). The contrasting finding thatM. javanica occupancy increases with distance from rivers
may reflect the fact that this more arboreal species uses a much wider range of habitat types, and is thought to have been
pushed out of lowland areas by human disturbance and hunting pressure across much of its range (see Challender et al.,
2014b). Combined with low reported abundances of M. javanica in peat-swamp forests in east and central Kalimantan,
Indonesia and Sarawak, Malaysia (Challender et al., 2014b), our results suggest that this species may be less suited to riverine
and swamp forest habitats compared with S. gigantea. It may also be that rivers serve as transport routes for hunters,
particularly in very dense forests without roads, which could lead to increased hunting pressure in proximal areas and
therefore decreased population density and/or detectability. However, M. javanica has been recorded in wetland habitat in
Vietnam in an area of considerable hunting pressure (Willcox et al., 2017). Further research is required to determine optimal
habitat requirements for this species.

Across our sample of studies, we found evidence for a higher probability of occupancy outside protected areas for bothM.
javanica and P. tricuspis, which contradicted our initial expectations. Our measure of protection was necessarily coarse (a



Table 1
Summary of camera trap data obtained for analysing occupancy of pangolins across their range.

Species Represented range
countries

Studies
(n)

Camera
traps (n)

Five-day trap
occasions (n)

Trap occasions with
detections (n)

Naive
occupancya

Naive detection
probabilityb

Indian pangolin Manis
crassicaudata

India 8 361 9405 29 0.07 <0.01

Philippine pangolin Manis
culionensis

No data obtained N/A N/A N/A N/A N/A N/A

Sunda pangolin
Manis javanica

Cambodia 43 2944 33,857 162 0.04 <0.01
Indonesia
Laos
Malaysia
Singapore
Thailand
Vietnam

Chinese pangolin
Manis pentadactyla

India 5 737 9547 3 <0.01 <0.01
Laos
Vietnam

Black-bellied pangolin
Phataginus tetradactyla

Cameroon 12 834 8186 0 N/A N/A
Gabon
Liberia
Republic of the
Congo

White-bellied pangolin
Phataginus tricuspis

Cameroon 18 2287 29,083 275 0.10 <0.01
DRC
Gabon
Liberia
Republic of the
Congo
Rwanda
South Sudan
Uganda

Giant pangolin
Smutsia gigantea

Cameroon 17 1993 27,249 414 0.13 0.02
DRC
Gabon
Liberia
Republic of the
Congo
Rwanda
South Sudan
Uganda

Temminck's ground
pangolin

Smutsia temminckii

Botswana 13 708 12,654 5 <0.01 <0.01
Kenya
Namibia
South Africa
Tanzania
Zimbabwe

a Proportion of surveyed camera trap locations with pangolin detections.
b Proportion of sampling occasions with pangolin detections.
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binary variable of protected status), meaning that actual levels of protection on the ground may have been poorly captured.
Even so, our findings are supported by previous studies that have demonstrated the ability of multiple pangolin species to
inhabit degraded habitats (M. crassicaudata: Karawita et al., 2018; M. javanica: Wearn et al., 2017; M. pentadactyla: Pei et al.,
2010; Trageser et al., 2017; P. tricuspis: Akpona et al., 2008; S. gigantea: Mugume et al., 2015). In Benin, for example, Akpona
et al. (2008) detected no significant difference in the number of P. tricuspis recorded in natural forest and old teak plantations.
Similarly, in Borneo, M. javanica was found at higher local abundances in intensively logged sites compared to old-growth
forest, under very low levels of hunting pressure (Wearn et al., 2017). This could be related to prey availability in
disturbed sites, and/or reduced natural predation pressure outside of protected areas. The fact that some pangolin species
appear able to cope with some level of disturbance and habitat degradation gives hope for their future persistence in
increasingly human-dominated environments. However, we stress that our results do not mean that protection measures are
not needed; nor do they indicate that pangolins prefer degraded habitat over intact habitat. In order to test these hypotheses,
a sampling design with matched treatment replicates, or better fine-scale covariates, would be needed, and is highly rec-
ommended for future studies.

Despite the well-documented impacts that hunting has on local pangolin populations (see Challender et al., 2014b), none
of the modelled species showed an association between occupancy and the human influence index. However, it should be
noted that there were no camera traps located in highly disturbed habitats within the range of the African species, with
maximum indices reaching 26 out of a potential 64. More direct measures of hunting pressure are not currently available at



Fig. 2. Model-averaged covariate estimates for detection and occupancy, averaged across the best-supported models (DAICc� 6). Error bars represent 95%
confidence intervals. Values above error bars indicate the percentage of candidate models in which each covariate was present. Significant covariates are denoted
by an asterisk.
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sufficiently large scale, but could aid broad understanding of how pangolins respond to this threat, including potentially
useful information on the levels of offtake that pangolin populations might be able to withstand. This would require a
concerted and coordinated effort across studies in order to measure hunting pressure in a comparable way. Alternatively, at
more local scales or at site level, hunting data could be used to inform modelling (Ingram et al., 2017).

4.2. Influencing factors for pangolin detectability

The low detectability of all pangolin species in our dataset is likely to be due to a combination of factors, including low
population densities (especially in the case of exploited populations; Willcox et al., 2019); sub-optimal placement, operation
and suitability of camera traps for detecting pangolins (Apps andMcNutt, 2018); the arboreal and/or burrowing behaviours of
pangolins (which reduces their availability for detection by ground-based cameras) (Challender et al. in prep; Kingdon and
Hoffman, 2013); and perhaps relatively slow movement rates (meaning that cameras are encountered infrequently)
(Hofmeester et al., 2019). Human influence and forest cover were found to affect detectability only for P. tricuspis. Probability
of detection was higher for this species in locations affected by greater human influence, perhaps because pangolins move
further, spend more time on the ground, and/or occur at higher density in disturbed areas, thereby triggering cameras more
frequently. Detectability was also higher in locations with more forest cover, possibly due to reduced understorey vegetation



Fig. 3. Probability of occupancy of (A) white-bellied pangolin Phataginus tricuspis and (B) giant pangolin Smutsia gigantea based on elevation; (C) Sunda pangolin
Manis javanica and (D) giant pangolin based on distance to the nearest river; and (E) white-bellied pangolin based on forest cover. All other covariates were set to
their mean value. Shaded areas represent 95% confidence intervals.
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Fig. 4. Probability of occupancy of (A) Sunda pangolin Manis javanica and (B) white-bellied pangolin Phataginus tricuspis based on protected area status. Error
bars represent 95% confidence intervals.

Fig. 5. Probability of detection of white-bellied pangolin Phataginus tricuspis based on (A) the Human Influence Index (WCS and CIESIN, 2005) and (B) percentage
forest cover. Shaded areas represent 95% confidence intervals.
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density (and therefore larger camera detection zones) in such habitats. Detectability was not found to vary according to the
protection status of a location.

Although the data presented here are extensive, they are restricted by the limits of the professional network of the authors,
and by the response rate to our data requests. They therefore do not provide full coverage of the possible range of the eight
pangolin species, nor constitute a complete representation of camera trap surveys that took place within known pangolin
distributions between 2010 and 2016. Due to the scarcity of pangolin records in our final dataset, we were only able to fit
relatively simple occupancy models with few variables, limiting our ability to fully account for heterogeneity in detection
(likely causing a negative bias in our occupancy estimates) and allowing us to test only a narrow range of hypotheses about
the potential drivers of pangolin occurrence. In addition, we were constrained to use coarse-scale global variables due to the
lack of standardised and ecologically-relevant variables collected across our contributed data, and not all variables were found
in all combinations. These are common problemswhen using data frommany disparate studies, each using different methods
(e.g. Scotson et al., 2017a). Heterogeneity could be reduced and better accounted for with greater consistency across camera
trap studies in data collection and recording protocols (Scotson et al., 2017b), which would also facilitate much greater ease of



Table 2
Recommended current and potential uses of camera traps in pangolin detection and spatial or temporal monitoring.

Study aim Are camera traps
suitable?

Justification

Currently Potentially
in future

Detection Y Y Detection of P. tricuspis, S. gigantea andM. javanica has been achieved across
multiple sites. It is feasible to ensure 90e95% confidence of detecting these
species with moderate sampling effort, and may be feasible for other
pangolin species with moderate or high sampling efforts. For P. tetradactyla,
this would likely involve at least some arboreal camera trapping.

Large-scale modelling of pangolin distribution Y Y Large-scale modelling of pangolin occupancy has been possible for P.
tricuspis, S. gigantea and M. javanica, although better standardisation of
methods and covariates would improve the inferences that can be made.
This could also be possible for other pangolin species through more
widespread collaborative sharing of datasets.

Monitoring pangolin occupancy in a study area with
pangolins recorded alongside a suite of other
species

N Y Prohibitively high sampling efforts are required for robust monitoring of
pangolin occupancy at the study area scale using prevailing methods. This is
likely the case even for the most detectable species, S. gigantea, and even in
the case of a population with relatively high abundance. However, it may be
possible in future as camera traps become more efficient per unit of labour
(thereby increasing detection probabilities) and surveys become more
ambitious in scale (i.e. involving many more stations within a study area).

Monitoring pangolin occupancy in a study area with
targeted camera placement for pangolins

Y? Y? Higher detectability of pangolins may be achieved using methods
specifically targeted at pangolins, with location and duration of camera
trapping informed by overall understanding of the ecology of each species
and identification of potential sites of activity using reconnaissance surveys.
This might make pangolin monitoring more feasible with moderate
sampling efforts. Limited, understanding of pangolin ecology, and
specifically microhabitat use, is a key knowledge gap preventing immediate
application.

Monitoring density of pangolins in a study area Y? Y? It might be possible to estimate pangolin density with camera traps in
future, assuming that developments in camera trap technology lead to 1)
higher detectability and 2) greater sampling intensities per study (i.e. more
stations, sampled for longer periods).
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data sharing for large-scale analyses. It might be possible to increase model precision by ‘borrowing’ information about
detectability from other species recorded in the same studies, using a Bayesian hierarchical modelling approach (Royle and
Dorazio, 2008). However, this multi-species approach may involve trading off accuracy in order to gain increased precision if
species do not form a coherent ecological group that can be modelled together (Dorazio et al., 2011).
4.3. Implications for pangolin detection and monitoring using camera traps

Camera traps might conceivably be used to a) detect pangolins, i.e. confirm their presence in a study area, and b) monitor
pangolins over space or time, i.e. by modelling their occupancy or density. Studies in our dataset successfully detected
pangolins, demonstrating that camera traps can be useful, even when the focus of surveys might be on other species.
However, our results suggest that moderately large sampling efforts are required to detect pangolins. Modelled detection
probabilities for the three species suggest that minimum sampling efforts required to ensure a 90e95% chance (using a simple
binomial model) of detecting P. tricuspis, S. gigantea and M. javanica if present are 446e580, 288e375, and 457e594 camera
trap nights, respectively. As an example, this could be achieved using 20 camera traps, each deployed for 30 nights.

Our results suggest that monitoring pangolins over space or time remains very challenging with camera traps. At coarse
scales, we have shown that it is possible to monitor pangolin occupancy across space. With better, fine-scale variables that
capture the likely drivers of pangolin occurrence (in particular hunting and habitat variables), as well as methodological
standardisation across studies (for example, as implemented by the TEAMNetwork; Jansen et al., 2014), this approach has the
potential to further inform our knowledge of pangolin ecology and their conservation. However, within a single study area, it
seems that monitoring pangolins over space or time is unlikely to succeed in most cases, at least using commonly-applied
methods and current camera trap technology. Following the occupancy survey design recommendations in Mackenzie and
Royle (2005) and Guillera-Arroita et al. (2010), we deduced that a minimum of 130 locations would need to be camera-
trapped for six months for S. gigantea, or 10 months for P. tricuspis and M. javanica in order to obtain a reasonably precise
occupancy estimate (with a standard error< 0.075) for a ‘depleted’ pangolin population (occupancy¼ 0.1) (Supplementary
Material, Appendix S2). For an ‘unexploited’ pangolin population (occupancy¼ 0.5), the same approach yields a recom-
mendation with fewer required locations (100), monitored for the same time period (Appendix S2). Sampling for such
extended periods risks violating the closure assumption of occupancy modelling, and is likely to be prohibitively costly or
logistically difficult (although it is being done in some sites, for example to monitor large felids). In addition, if the modelling
of occupancy as a function of covariates is desired, an even larger sample of locations will likely be required.



H. Khwaja et al. / Global Ecology and Conservation 20 (2019) e0076912
Although Bayesian approaches to leveraging information on detectability from other detected species can help with the
low number of detections (e.g. Wearn et al., 2017), model estimates will likely remain imprecise. In addition, occupancy does
not provide information on abundance, and other statistical methods would be needed to infer this. To date, no camera trap
studies have estimated pangolin density, although methods do in principle exist for species such as pangolins that are not
individually recognisable (Moeller et al., 2018; Howe et al., 2017; Rowcliffe et al., 2008). In practice, pangolin density might be
more efficiently obtained using other methods (e.g. non-invasive genetic methods; Challender et al., in prep.).

Developments in camera trap methods and technology have the potential to improve the feasibility of monitoring pan-
golins at the site level. The sampling effort recommendations provided above are based on studies in which pangolins were
not generally the focus, meaning that the detection probabilities could potentially be improved by targeting pangolin tracks,
feeding signs, or burrows. For example, in a recent study of S. gigantea at a site in Uganda, naïve detection probabilities were
increased tenfold by transitioning from systematic grid-based surveys to targeted camera trapping focusing on burrows,
tracks and feeding signs located using reconnaissance surveys (N. Matthews, S. Isoke & S. Nixon, unpubl. data). The increased
volume of records is in turn helping to facilitate improved understanding of S. gigantea ecology to further refine targeted
camera trapping methods in future. A deeper understanding of the ecology of all pangolin species, including home range size,
habitat use, speed of movement, proportion of time spent on the ground (for semi-arboreal species), and microhabitat
preferences could contribute significantly towards optimisation of camera trap placement strategies (Hofmeester et al., 2019).
In addition, camera trap technology is constantly improving in terms of battery life, memory capacity and cost (Glover-Kapfer
et al., 2019), which increases the feasibility of achieving the very high sampling efforts required for monitoring pangolins. The
labour costs of processing large amounts of camera trap data are also decreasing with the advent of new citizen-science and
machine learning approaches (e.g. Willi et al., 2018). We present a summary of recommendations for the use of camera
trapping in pangolin detection and monitoring in Table 2. Finally, camera trap images have other benefits beyondmonitoring,
including their value as tools for outreach, engagement and law enforcement (Steenweg et al., 2017; Hossain et al., 2016).

5. Conclusions

Our results suggest that standard camera trapping protocols for generic biodiversity surveys and/or targeting other me-
dium to large mammals are insufficient to reliably estimate pangolin occupancy for a single study area. Pangolins were
nevertheless detected in multiple studies in our dataset, and we were able to uncover relationships between pangolin
occurrence and landscape variables on a broad scale. Should a coordinated approach to future camera trapping surveys bring
about standardised methods and recording of covariate data, future large-scale, cross-study analyses such as this could
deliver greater insights into pangolin ecology. On an individual survey scale, refined methods could improve the utility of
camera trapping for monitoring pangolin occupancy, but abundance estimation remains to be tested, and might be better
achieved with alternative methods. Future technological and methodological advances may facilitate the large sampling
efforts required to obtainmeaningful pangolin population estimates from camera trapping surveys in a cost-effective manner.
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